FunASR/funasr/metrics/wer.py

226 lines
6.2 KiB
Python

import os
import numpy as np
import sys
import hydra
from omegaconf import DictConfig, OmegaConf, ListConfig
def compute_wer(
ref_file,
hyp_file,
cer_file,
cn_postprocess=False,
):
rst = {
"Wrd": 0,
"Corr": 0,
"Ins": 0,
"Del": 0,
"Sub": 0,
"Snt": 0,
"Err": 0.0,
"S.Err": 0.0,
"wrong_words": 0,
"wrong_sentences": 0,
}
hyp_dict = {}
ref_dict = {}
with open(hyp_file, "r") as hyp_reader:
for line in hyp_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = " ".join(value)
value = value.replace(" ", "")
if value[0] == "":
value = value[1:]
value = [x for x in value]
hyp_dict[key] = value
with open(ref_file, "r") as ref_reader:
for line in ref_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = " ".join(value)
value = value.replace(" ", "")
value = [x for x in value]
ref_dict[key] = value
cer_detail_writer = open(cer_file, "w")
for hyp_key in hyp_dict:
if hyp_key in ref_dict:
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
rst["Wrd"] += out_item["nwords"]
rst["Corr"] += out_item["cor"]
rst["wrong_words"] += out_item["wrong"]
rst["Ins"] += out_item["ins"]
rst["Del"] += out_item["del"]
rst["Sub"] += out_item["sub"]
rst["Snt"] += 1
if out_item["wrong"] > 0:
rst["wrong_sentences"] += 1
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + "\n")
cer_detail_writer.write(
"ref:" + "\t" + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + "\n"
)
cer_detail_writer.write(
"hyp:" + "\t" + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + "\n"
)
cer_detail_writer.flush()
if rst["Wrd"] > 0:
rst["Err"] = round(rst["wrong_words"] * 100 / rst["Wrd"], 2)
if rst["Snt"] > 0:
rst["S.Err"] = round(rst["wrong_sentences"] * 100 / rst["Snt"], 2)
cer_detail_writer.write("\n")
cer_detail_writer.write(
"%WER "
+ str(rst["Err"])
+ " [ "
+ str(rst["wrong_words"])
+ " / "
+ str(rst["Wrd"])
+ ", "
+ str(rst["Ins"])
+ " ins, "
+ str(rst["Del"])
+ " del, "
+ str(rst["Sub"])
+ " sub ]"
+ "\n"
)
cer_detail_writer.write(
"%SER "
+ str(rst["S.Err"])
+ " [ "
+ str(rst["wrong_sentences"])
+ " / "
+ str(rst["Snt"])
+ " ]"
+ "\n"
)
cer_detail_writer.write(
"Scored "
+ str(len(hyp_dict))
+ " sentences, "
+ str(len(hyp_dict) - rst["Snt"])
+ " not present in hyp."
+ "\n"
)
cer_detail_writer.close()
def compute_wer_by_line(hyp, ref):
hyp = list(map(lambda x: x.lower(), hyp))
ref = list(map(lambda x: x.lower(), ref))
len_hyp = len(hyp)
len_ref = len(ref)
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
for i in range(len_hyp + 1):
cost_matrix[i][0] = i
for j in range(len_ref + 1):
cost_matrix[0][j] = j
for i in range(1, len_hyp + 1):
for j in range(1, len_ref + 1):
if hyp[i - 1] == ref[j - 1]:
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
else:
substitution = cost_matrix[i - 1][j - 1] + 1
insertion = cost_matrix[i - 1][j] + 1
deletion = cost_matrix[i][j - 1] + 1
compare_val = [substitution, insertion, deletion]
min_val = min(compare_val)
operation_idx = compare_val.index(min_val) + 1
cost_matrix[i][j] = min_val
ops_matrix[i][j] = operation_idx
match_idx = []
i = len_hyp
j = len_ref
rst = {"nwords": len_ref, "cor": 0, "wrong": 0, "ins": 0, "del": 0, "sub": 0}
while i >= 0 or j >= 0:
i_idx = max(0, i)
j_idx = max(0, j)
if ops_matrix[i_idx][j_idx] == 0: # correct
if i - 1 >= 0 and j - 1 >= 0:
match_idx.append((j - 1, i - 1))
rst["cor"] += 1
i -= 1
j -= 1
elif ops_matrix[i_idx][j_idx] == 2: # insert
i -= 1
rst["ins"] += 1
elif ops_matrix[i_idx][j_idx] == 3: # delete
j -= 1
rst["del"] += 1
elif ops_matrix[i_idx][j_idx] == 1: # substitute
i -= 1
j -= 1
rst["sub"] += 1
if i < 0 and j >= 0:
rst["del"] += 1
elif j < 0 and i >= 0:
rst["ins"] += 1
match_idx.reverse()
wrong_cnt = cost_matrix[len_hyp][len_ref]
rst["wrong"] = wrong_cnt
return rst
def print_cer_detail(rst):
return (
"("
+ "nwords="
+ str(rst["nwords"])
+ ",cor="
+ str(rst["cor"])
+ ",ins="
+ str(rst["ins"])
+ ",del="
+ str(rst["del"])
+ ",sub="
+ str(rst["sub"])
+ ") corr:"
+ "{:.2%}".format(rst["cor"] / rst["nwords"])
+ ",cer:"
+ "{:.2%}".format(rst["wrong"] / rst["nwords"])
)
@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
ref_file = cfg.get("ref_file", None)
hyp_file = cfg.get("hyp_file", None)
cer_file = cfg.get("cer_file", None)
cn_postprocess = cfg.get("cn_postprocess", False)
if ref_file is None or hyp_file is None or cer_file is None:
print(
"usage : python -m funasr.metrics.wer ++ref_file=test.ref ++hyp_file=test.hyp ++cer_file=test.wer ++cn_postprocess=false"
)
sys.exit(0)
compute_wer(ref_file, hyp_file, cer_file, cn_postprocess)
if __name__ == "__main__":
main_hydra()