546 lines
20 KiB
Python
546 lines
20 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
# Part of the implementation is borrowed from espnet/espnet.
|
|
from typing import Tuple
|
|
import copy
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
import funasr.frontends.eend_ola_feature as eend_ola_feature
|
|
from funasr.register import tables
|
|
|
|
|
|
def load_cmvn(cmvn_file):
|
|
with open(cmvn_file, "r", encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
means_list = []
|
|
vars_list = []
|
|
for i in range(len(lines)):
|
|
line_item = lines[i].split()
|
|
if line_item[0] == "<AddShift>":
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == "<LearnRateCoef>":
|
|
add_shift_line = line_item[3 : (len(line_item) - 1)]
|
|
means_list = list(add_shift_line)
|
|
continue
|
|
elif line_item[0] == "<Rescale>":
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == "<LearnRateCoef>":
|
|
rescale_line = line_item[3 : (len(line_item) - 1)]
|
|
vars_list = list(rescale_line)
|
|
continue
|
|
means = np.array(means_list).astype(np.float32)
|
|
vars = np.array(vars_list).astype(np.float32)
|
|
cmvn = np.array([means, vars])
|
|
cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
|
|
return cmvn
|
|
|
|
|
|
def apply_cmvn(inputs, cmvn): # noqa
|
|
"""
|
|
Apply CMVN with mvn data
|
|
"""
|
|
|
|
device = inputs.device
|
|
dtype = inputs.dtype
|
|
frame, dim = inputs.shape
|
|
|
|
means = cmvn[0:1, :dim]
|
|
vars = cmvn[1:2, :dim]
|
|
inputs += means.to(device)
|
|
inputs *= vars.to(device)
|
|
|
|
return inputs.type(torch.float32)
|
|
|
|
|
|
def apply_lfr(inputs, lfr_m, lfr_n):
|
|
LFR_inputs = []
|
|
T = inputs.shape[0]
|
|
T_lfr = int(np.ceil(T / lfr_n))
|
|
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
|
|
inputs = torch.vstack((left_padding, inputs))
|
|
T = T + (lfr_m - 1) // 2
|
|
for i in range(T_lfr):
|
|
if lfr_m <= T - i * lfr_n:
|
|
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
|
|
else: # process last LFR frame
|
|
num_padding = lfr_m - (T - i * lfr_n)
|
|
frame = (inputs[i * lfr_n :]).view(-1)
|
|
for _ in range(num_padding):
|
|
frame = torch.hstack((frame, inputs[-1]))
|
|
LFR_inputs.append(frame)
|
|
LFR_outputs = torch.vstack(LFR_inputs)
|
|
return LFR_outputs.type(torch.float32)
|
|
|
|
|
|
@tables.register("frontend_classes", "wav_frontend")
|
|
@tables.register("frontend_classes", "WavFrontend")
|
|
class WavFrontend(nn.Module):
|
|
"""Conventional frontend structure for ASR."""
|
|
|
|
def __init__(
|
|
self,
|
|
cmvn_file: str = None,
|
|
fs: int = 16000,
|
|
window: str = "hamming",
|
|
n_mels: int = 80,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
filter_length_min: int = -1,
|
|
filter_length_max: int = -1,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
dither: float = 1.0,
|
|
snip_edges: bool = True,
|
|
upsacle_samples: bool = True,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.fs = fs
|
|
self.window = window
|
|
self.n_mels = n_mels
|
|
self.frame_length = frame_length
|
|
self.frame_shift = frame_shift
|
|
self.filter_length_min = filter_length_min
|
|
self.filter_length_max = filter_length_max
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.cmvn_file = cmvn_file
|
|
self.dither = dither
|
|
self.snip_edges = snip_edges
|
|
self.upsacle_samples = upsacle_samples
|
|
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
|
|
|
|
def output_size(self) -> int:
|
|
return self.n_mels * self.lfr_m
|
|
|
|
def forward(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
if self.upsacle_samples:
|
|
waveform = waveform * (1 << 15)
|
|
waveform = waveform.unsqueeze(0)
|
|
mat = kaldi.fbank(
|
|
waveform,
|
|
num_mel_bins=self.n_mels,
|
|
frame_length=self.frame_length,
|
|
frame_shift=self.frame_shift,
|
|
dither=self.dither,
|
|
energy_floor=0.0,
|
|
window_type=self.window,
|
|
sample_frequency=self.fs,
|
|
snip_edges=self.snip_edges,
|
|
)
|
|
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
|
|
if self.cmvn is not None:
|
|
mat = apply_cmvn(mat, self.cmvn)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
if batch_size == 1:
|
|
feats_pad = feats[0][None, :, :]
|
|
else:
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
def forward_fbank(
|
|
self, input: torch.Tensor, input_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
waveform = waveform * (1 << 15)
|
|
waveform = waveform.unsqueeze(0)
|
|
mat = kaldi.fbank(
|
|
waveform,
|
|
num_mel_bins=self.n_mels,
|
|
frame_length=self.frame_length,
|
|
frame_shift=self.frame_shift,
|
|
dither=self.dither,
|
|
energy_floor=0.0,
|
|
window_type=self.window,
|
|
sample_frequency=self.fs,
|
|
)
|
|
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
def forward_lfr_cmvn(
|
|
self, input: torch.Tensor, input_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
mat = input[i, : input_lengths[i], :]
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
|
|
if self.cmvn is not None:
|
|
mat = apply_cmvn(mat, self.cmvn)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
|
|
@tables.register("frontend_classes", "WavFrontendOnline")
|
|
class WavFrontendOnline(nn.Module):
|
|
"""Conventional frontend structure for streaming ASR/VAD."""
|
|
|
|
def __init__(
|
|
self,
|
|
cmvn_file: str = None,
|
|
fs: int = 16000,
|
|
window: str = "hamming",
|
|
n_mels: int = 80,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
filter_length_min: int = -1,
|
|
filter_length_max: int = -1,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
dither: float = 1.0,
|
|
snip_edges: bool = True,
|
|
upsacle_samples: bool = True,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.fs = fs
|
|
self.window = window
|
|
self.n_mels = n_mels
|
|
self.frame_length = frame_length
|
|
self.frame_shift = frame_shift
|
|
self.frame_sample_length = int(self.frame_length * self.fs / 1000)
|
|
self.frame_shift_sample_length = int(self.frame_shift * self.fs / 1000)
|
|
self.filter_length_min = filter_length_min
|
|
self.filter_length_max = filter_length_max
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.cmvn_file = cmvn_file
|
|
self.dither = dither
|
|
self.snip_edges = snip_edges
|
|
self.upsacle_samples = upsacle_samples
|
|
# self.waveforms = None
|
|
# self.reserve_waveforms = None
|
|
# self.fbanks = None
|
|
# self.fbanks_lens = None
|
|
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
|
|
# self.input_cache = None
|
|
# self.lfr_splice_cache = []
|
|
|
|
def output_size(self) -> int:
|
|
return self.n_mels * self.lfr_m
|
|
|
|
@staticmethod
|
|
def apply_cmvn(inputs: torch.Tensor, cmvn: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply CMVN with mvn data
|
|
"""
|
|
|
|
device = inputs.device
|
|
dtype = inputs.dtype
|
|
frame, dim = inputs.shape
|
|
|
|
means = np.tile(cmvn[0:1, :dim], (frame, 1))
|
|
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
|
|
inputs += torch.from_numpy(means).type(dtype).to(device)
|
|
inputs *= torch.from_numpy(vars).type(dtype).to(device)
|
|
|
|
return inputs.type(torch.float32)
|
|
|
|
@staticmethod
|
|
def apply_lfr(
|
|
inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False
|
|
) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
|
"""
|
|
Apply lfr with data
|
|
"""
|
|
|
|
LFR_inputs = []
|
|
# inputs = torch.vstack((inputs_lfr_cache, inputs))
|
|
T = inputs.shape[0] # include the right context
|
|
T_lfr = int(
|
|
np.ceil((T - (lfr_m - 1) // 2) / lfr_n)
|
|
) # minus the right context: (lfr_m - 1) // 2
|
|
splice_idx = T_lfr
|
|
for i in range(T_lfr):
|
|
if lfr_m <= T - i * lfr_n:
|
|
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
|
|
else: # process last LFR frame
|
|
if is_final:
|
|
num_padding = lfr_m - (T - i * lfr_n)
|
|
frame = (inputs[i * lfr_n :]).view(-1)
|
|
for _ in range(num_padding):
|
|
frame = torch.hstack((frame, inputs[-1]))
|
|
LFR_inputs.append(frame)
|
|
else:
|
|
# update splice_idx and break the circle
|
|
splice_idx = i
|
|
break
|
|
splice_idx = min(T - 1, splice_idx * lfr_n)
|
|
lfr_splice_cache = inputs[splice_idx:, :]
|
|
LFR_outputs = torch.vstack(LFR_inputs)
|
|
return LFR_outputs.type(torch.float32), lfr_splice_cache, splice_idx
|
|
|
|
@staticmethod
|
|
def compute_frame_num(
|
|
sample_length: int, frame_sample_length: int, frame_shift_sample_length: int
|
|
) -> int:
|
|
frame_num = int((sample_length - frame_sample_length) / frame_shift_sample_length + 1)
|
|
return frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
|
|
|
|
def forward_fbank(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor,
|
|
cache: dict = {},
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
|
|
input = torch.cat((cache["input_cache"], input), dim=1)
|
|
frame_num = self.compute_frame_num(
|
|
input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length
|
|
)
|
|
# update self.in_cache
|
|
cache["input_cache"] = input[
|
|
:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length) :
|
|
]
|
|
waveforms = torch.empty(0)
|
|
feats_pad = torch.empty(0)
|
|
feats_lens = torch.empty(0)
|
|
if frame_num:
|
|
waveforms = []
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform = input[i]
|
|
# we need accurate wave samples that used for fbank extracting
|
|
waveforms.append(
|
|
waveform[
|
|
: (
|
|
(frame_num - 1) * self.frame_shift_sample_length
|
|
+ self.frame_sample_length
|
|
)
|
|
]
|
|
)
|
|
waveform = waveform * (1 << 15)
|
|
waveform = waveform.unsqueeze(0)
|
|
mat = kaldi.fbank(
|
|
waveform,
|
|
num_mel_bins=self.n_mels,
|
|
frame_length=self.frame_length,
|
|
frame_shift=self.frame_shift,
|
|
dither=self.dither,
|
|
energy_floor=0.0,
|
|
window_type=self.window,
|
|
sample_frequency=self.fs,
|
|
)
|
|
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
waveforms = torch.stack(waveforms)
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
cache["fbanks"] = feats_pad
|
|
cache["fbanks_lens"] = copy.deepcopy(feats_lens)
|
|
return waveforms, feats_pad, feats_lens
|
|
|
|
def forward_lfr_cmvn(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor,
|
|
is_final: bool = False,
|
|
cache: dict = {},
|
|
**kwargs,
|
|
):
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
lfr_splice_frame_idxs = []
|
|
for i in range(batch_size):
|
|
mat = input[i, : input_lengths[i], :]
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
# update self.lfr_splice_cache in self.apply_lfr
|
|
# mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i],
|
|
mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = self.apply_lfr(
|
|
mat, self.lfr_m, self.lfr_n, is_final
|
|
)
|
|
if self.cmvn_file is not None:
|
|
mat = self.apply_cmvn(mat, self.cmvn)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
lfr_splice_frame_idxs = torch.as_tensor(lfr_splice_frame_idxs)
|
|
return feats_pad, feats_lens, lfr_splice_frame_idxs
|
|
|
|
def forward(self, input: torch.Tensor, input_lengths: torch.Tensor, **kwargs):
|
|
is_final = kwargs.get("is_final", False)
|
|
cache = kwargs.get("cache", {})
|
|
if len(cache) == 0:
|
|
self.init_cache(cache)
|
|
|
|
batch_size = input.shape[0]
|
|
assert (
|
|
batch_size == 1
|
|
), "we support to extract feature online only when the batch size is equal to 1 now"
|
|
|
|
waveforms, feats, feats_lengths = self.forward_fbank(
|
|
input, input_lengths, cache=cache
|
|
) # input shape: B T D
|
|
|
|
if feats.shape[0]:
|
|
|
|
cache["waveforms"] = torch.cat((cache["reserve_waveforms"], waveforms), dim=1)
|
|
|
|
if not cache["lfr_splice_cache"]: # 初始化splice_cache
|
|
for i in range(batch_size):
|
|
cache["lfr_splice_cache"].append(
|
|
feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)
|
|
)
|
|
# need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m
|
|
if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m:
|
|
lfr_splice_cache_tensor = torch.stack(cache["lfr_splice_cache"]) # B T D
|
|
feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1)
|
|
feats_lengths += lfr_splice_cache_tensor[0].shape[0]
|
|
frame_from_waveforms = int(
|
|
(cache["waveforms"].shape[1] - self.frame_sample_length)
|
|
/ self.frame_shift_sample_length
|
|
+ 1
|
|
)
|
|
minus_frame = (
|
|
(self.lfr_m - 1) // 2 if cache["reserve_waveforms"].numel() == 0 else 0
|
|
)
|
|
feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(
|
|
feats, feats_lengths, is_final, cache=cache
|
|
)
|
|
if self.lfr_m == 1:
|
|
cache["reserve_waveforms"] = torch.empty(0)
|
|
else:
|
|
reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
|
|
# print('reserve_frame_idx: ' + str(reserve_frame_idx))
|
|
# print('frame_frame: ' + str(frame_from_waveforms))
|
|
cache["reserve_waveforms"] = cache["waveforms"][
|
|
:,
|
|
reserve_frame_idx
|
|
* self.frame_shift_sample_length : frame_from_waveforms
|
|
* self.frame_shift_sample_length,
|
|
]
|
|
sample_length = (
|
|
frame_from_waveforms - 1
|
|
) * self.frame_shift_sample_length + self.frame_sample_length
|
|
cache["waveforms"] = cache["waveforms"][:, :sample_length]
|
|
else:
|
|
# update self.reserve_waveforms and self.lfr_splice_cache
|
|
cache["reserve_waveforms"] = cache["waveforms"][
|
|
:, : -(self.frame_sample_length - self.frame_shift_sample_length)
|
|
]
|
|
for i in range(batch_size):
|
|
cache["lfr_splice_cache"][i] = torch.cat(
|
|
(cache["lfr_splice_cache"][i], feats[i]), dim=0
|
|
)
|
|
return torch.empty(0), feats_lengths
|
|
else:
|
|
if is_final:
|
|
cache["waveforms"] = (
|
|
waveforms
|
|
if cache["reserve_waveforms"].numel() == 0
|
|
else cache["reserve_waveforms"]
|
|
)
|
|
feats = torch.stack(cache["lfr_splice_cache"])
|
|
feats_lengths = torch.zeros(batch_size, dtype=torch.int) + feats.shape[1]
|
|
feats, feats_lengths, _ = self.forward_lfr_cmvn(
|
|
feats, feats_lengths, is_final, cache=cache
|
|
)
|
|
# if is_final:
|
|
# self.init_cache(cache)
|
|
return feats, feats_lengths
|
|
|
|
def init_cache(self, cache: dict = {}):
|
|
cache["reserve_waveforms"] = torch.empty(0)
|
|
cache["input_cache"] = torch.empty(0)
|
|
cache["lfr_splice_cache"] = []
|
|
cache["waveforms"] = None
|
|
cache["fbanks"] = None
|
|
cache["fbanks_lens"] = None
|
|
return cache
|
|
|
|
|
|
class WavFrontendMel23(nn.Module):
|
|
"""Conventional frontend structure for ASR."""
|
|
|
|
def __init__(
|
|
self,
|
|
fs: int = 16000,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.fs = fs
|
|
self.frame_length = frame_length
|
|
self.frame_shift = frame_shift
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.n_mels = 23
|
|
|
|
def output_size(self) -> int:
|
|
return self.n_mels * (2 * self.lfr_m + 1)
|
|
|
|
def forward(
|
|
self, input: torch.Tensor, input_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
waveform = waveform.numpy()
|
|
mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
|
|
mat = eend_ola_feature.transform(mat)
|
|
mat = eend_ola_feature.splice(mat, context_size=self.lfr_m)
|
|
mat = mat[:: self.lfr_n]
|
|
mat = torch.from_numpy(mat)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
|
return feats_pad, feats_lens
|