FunASR/funasr/datasets/large_datasets/build_dataloader.py

110 lines
3.8 KiB
Python

import logging
from pathlib import Path
from typing import Iterable
from typing import List
from typing import Union
import sentencepiece as spm
from torch.utils.data import DataLoader
from funasr.datasets.large_datasets.dataset import Dataset
from funasr.datasets.large_datasets.abs_iter_factory import AbsIterFactory
from funasr.tokenizer.abs_tokenizer import AbsTokenizer
from funasr.register import tables
def read_symbol_table(symbol_table_file):
if isinstance(symbol_table_file, str):
symbol_table = {}
with open(symbol_table_file, "r", encoding="utf8") as fin:
for i, line in enumerate(fin):
char = line.strip()
symbol_table[char] = i
else:
assert isinstance(symbol_table_file, list)
symbol_table = {}
for i, char in enumerate(symbol_table_file):
symbol_table[char] = i
return symbol_table
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
class SentencepiecesTokenizer(AbsTokenizer):
def __init__(self, model: Union[Path, str]):
self.model = str(model)
self.sp = None
def __repr__(self):
return f'{self.__class__.__name__}(model="{self.model}")'
def _build_sentence_piece_processor(self):
if self.sp is None:
self.sp = spm.SentencePieceProcessor()
self.sp.load(self.model)
def text2tokens(self, line: str) -> List[str]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsPieces(line)
def tokens2text(self, tokens: Iterable[str]) -> str:
self._build_sentence_piece_processor()
return self.sp.DecodePieces(list(tokens))
@tables.register("dataset_classes", "LargeDataset")
class LargeDataLoader(AbsIterFactory):
def __init__(self, args, mode="train"):
symbol_table, seg_dict, punc_dict, bpe_tokenizer = None, None, None, None
if hasattr(args, "token_list") and args.token_list is not None:
symbol_table = read_symbol_table(args.token_list)
if hasattr(args, "seg_dict_file") and args.seg_dict_file is not None:
seg_dict = load_seg_dict(args.seg_dict_file)
if hasattr(args, "punc_list") and args.punc_list is not None:
punc_dict = read_symbol_table(args.punc_list)
if hasattr(args, "bpemodel") and args.bpemodel is not None:
bpe_tokenizer = SentencepiecesTokenizer(args.bpemodel)
self.dataset_conf = args.dataset_conf
if "frontend_conf" not in args:
self.frontend_conf = None
else:
self.frontend_conf = args.frontend_conf
self.speed_perturb = args.speed_perturb if hasattr(args, "speed_perturb") else None
logging.info("dataloader config: {}".format(self.dataset_conf))
batch_mode = self.dataset_conf.get("batch_mode", "padding")
data_list = args.train_data_file if mode == "train" else args.valid_data_file
self.dataset = Dataset(
data_list,
symbol_table,
seg_dict,
punc_dict,
bpe_tokenizer,
self.dataset_conf,
self.frontend_conf,
speed_perturb=self.speed_perturb if mode == "train" else None,
mode=mode,
batch_mode=batch_mode,
)
def build_iter(self, epoch, shuffle=True):
self.dataset.set_epoch(epoch)
data_loader = DataLoader(
self.dataset,
batch_size=None,
pin_memory=True,
num_workers=self.dataset_conf.get("num_workers", 8),
)
return data_loader