59 lines
2.1 KiB
Python
59 lines
2.1 KiB
Python
import pynini
|
|
from fun_text_processing.text_normalization.en.graph_utils import (
|
|
DAMO_NOT_QUOTE,
|
|
GraphFst,
|
|
delete_space,
|
|
insert_space,
|
|
)
|
|
from pynini.lib import pynutil
|
|
|
|
|
|
class DecimalFst(GraphFst):
|
|
"""
|
|
Finite state transducer for verbalizing decimal, e.g.
|
|
decimal { negative: "true" integer_part: "twelve" fractional_part: "five o o six" quantity: "billion" } -> minus twelve point five o o six billion
|
|
|
|
Args:
|
|
deterministic: if True will provide a single transduction option,
|
|
for False multiple transduction are generated (used for audio-based normalization)
|
|
"""
|
|
|
|
def __init__(self, cardinal, deterministic: bool = True):
|
|
super().__init__(name="decimal", kind="verbalize", deterministic=deterministic)
|
|
self.optional_sign = pynini.cross('negative: "true"', "minus ")
|
|
if not deterministic:
|
|
self.optional_sign |= pynini.cross('negative: "true"', "negative ")
|
|
self.optional_sign = pynini.closure(self.optional_sign + delete_space, 0, 1)
|
|
self.integer = pynutil.delete("integer_part:") + cardinal.integer
|
|
self.optional_integer = pynini.closure(self.integer + delete_space + insert_space, 0, 1)
|
|
self.fractional_default = (
|
|
pynutil.delete("fractional_part:")
|
|
+ delete_space
|
|
+ pynutil.delete('"')
|
|
+ pynini.closure(DAMO_NOT_QUOTE, 1)
|
|
+ pynutil.delete('"')
|
|
)
|
|
|
|
self.fractional = pynutil.insert("point ") + self.fractional_default
|
|
|
|
self.quantity = (
|
|
delete_space
|
|
+ insert_space
|
|
+ pynutil.delete("quantity:")
|
|
+ delete_space
|
|
+ pynutil.delete('"')
|
|
+ pynini.closure(DAMO_NOT_QUOTE, 1)
|
|
+ pynutil.delete('"')
|
|
)
|
|
self.optional_quantity = pynini.closure(self.quantity, 0, 1)
|
|
|
|
graph = self.optional_sign + (
|
|
self.integer
|
|
| (self.integer + self.quantity)
|
|
| (self.optional_integer + self.fractional + self.optional_quantity)
|
|
)
|
|
|
|
self.numbers = graph
|
|
delete_tokens = self.delete_tokens(graph)
|
|
self.fst = delete_tokens.optimize()
|