FunASR/examples/aishell/branchformer/run.sh

203 lines
6.6 KiB
Bash

#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES="0,1,2,3"
# general configuration
feats_dir="../DATA" #feature output dictionary
exp_dir=`pwd`
lang=zh
token_type=char
stage=0
stop_stage=5
# feature configuration
nj=32
inference_device="cuda" #"cpu"
inference_checkpoint="model.pt.avg10"
inference_scp="wav.scp"
inference_batch_size=1
# data
raw_data=../raw_data
data_url=www.openslr.org/resources/33
# exp tag
tag="exp1"
workspace=`pwd`
master_port=12345
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=train
valid_set=dev
test_sets="dev test"
config=branchformer_12e_6d_2048_256.yaml
model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
mkdir -p ${raw_data}
local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# Data preparation
local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
for x in train dev test; do
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
> ${feats_dir}/data/${x}/text
utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
# convert wav.scp text to jsonl
scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
++data_type_list='["source", "target"]' \
++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
${scp_file_list_arg}
done
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature and CMVN Generation"
python ../../../funasr/bin/compute_audio_cmvn.py \
--config-path "${workspace}/conf" \
--config-name "${config}" \
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
fi
token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
echo "dictionary: ${token_list}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: Dictionary Preparation"
mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
echo "make a dictionary"
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
echo "<unk>" >> ${token_list}
fi
# LM Training Stage
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: LM Training"
fi
# ASR Training Stage
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: ASR Training"
mkdir -p ${exp_dir}/exp/${model_dir}
current_time=$(date "+%Y-%m-%d_%H-%M")
log_file="${exp_dir}/exp/${model_dir}/train.log.txt.${current_time}"
echo "log_file: ${log_file}"
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
torchrun \
--nnodes 1 \
--nproc_per_node ${gpu_num} \
--master_port ${master_port} \
../../../funasr/bin/train.py \
--config-path "${workspace}/conf" \
--config-name "${config}" \
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \
++tokenizer_conf.token_list="${token_list}" \
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
fi
# Testing Stage
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "stage 5: Inference"
if [ ${inference_device} == "cuda" ]; then
nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
else
inference_batch_size=1
CUDA_VISIBLE_DEVICES=""
for JOB in $(seq ${nj}); do
CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
done
fi
for dset in ${test_sets}; do
inference_dir="${exp_dir}/exp/${model_dir}/inference-${inference_checkpoint}/${dset}"
_logdir="${inference_dir}/logdir"
echo "inference_dir: ${inference_dir}"
mkdir -p "${_logdir}"
data_dir="${feats_dir}/data/${dset}"
key_file=${data_dir}/${inference_scp}
split_scps=
for JOB in $(seq "${nj}"); do
split_scps+=" ${_logdir}/keys.${JOB}.scp"
done
utils/split_scp.pl "${key_file}" ${split_scps}
gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
export CUDA_VISIBLE_DEVICES=${gpuid}
python ../../../funasr/bin/inference.py \
--config-path="${exp_dir}/exp/${model_dir}" \
--config-name="config.yaml" \
++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
++tokenizer_conf.token_list="${token_list}" \
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
++input="${_logdir}/keys.${JOB}.scp" \
++output_dir="${inference_dir}/${JOB}" \
++device="${inference_device}" \
++ncpu=1 \
++disable_log=true \
++batch_size="${inference_batch_size}" &> ${_logdir}/log.${JOB}.txt
}&
done
wait
mkdir -p ${inference_dir}/1best_recog
for f in token score text; do
if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
for JOB in $(seq "${nj}"); do
cat "${inference_dir}/${JOB}/1best_recog/${f}"
done | sort -k1 >"${inference_dir}/1best_recog/${f}"
fi
done
echo "Computing WER ..."
python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref
python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
tail -n 3 ${inference_dir}/1best_recog/text.cer
done
fi