# -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import os.path from pathlib import Path from typing import List, Union, Tuple import copy import librosa import numpy as np from .utils.utils import ONNXRuntimeError, OrtInferSession, get_logger, read_yaml from .utils.frontend import WavFrontend, WavFrontendOnline from .utils.e2e_vad import E2EVadModel logging = get_logger() class Fsmn_vad: """ Author: Speech Lab of DAMO Academy, Alibaba Group Deep-FSMN for Large Vocabulary Continuous Speech Recognition https://arxiv.org/abs/1803.05030 """ def __init__( self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", quantize: bool = False, intra_op_num_threads: int = 4, max_end_sil: int = None, cache_dir: str = None, **kwargs, ): if not Path(model_dir).exists(): try: from modelscope.hub.snapshot_download import snapshot_download except: raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple" try: model_dir = snapshot_download(model_dir, cache_dir=cache_dir) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format( model_dir ) model_file = os.path.join(model_dir, "model.onnx") if quantize: model_file = os.path.join(model_dir, "model_quant.onnx") if not os.path.exists(model_file): print(".onnx is not exist, begin to export onnx") try: from funasr import AutoModel except: raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple" model = AutoModel(model=model_dir) model_dir = model.export(type="onnx", quantize=quantize, **kwargs) config_file = os.path.join(model_dir, "config.yaml") cmvn_file = os.path.join(model_dir, "am.mvn") config = read_yaml(config_file) self.frontend = WavFrontend(cmvn_file=cmvn_file, **config["frontend_conf"]) self.ort_infer = OrtInferSession( model_file, device_id, intra_op_num_threads=intra_op_num_threads ) self.batch_size = batch_size self.vad_scorer = E2EVadModel(config["model_conf"]) self.max_end_sil = ( max_end_sil if max_end_sil is not None else config["model_conf"]["max_end_silence_time"] ) self.encoder_conf = config["encoder_conf"] def prepare_cache(self, in_cache: list = []): if len(in_cache) > 0: return in_cache fsmn_layers = self.encoder_conf["fsmn_layers"] proj_dim = self.encoder_conf["proj_dim"] lorder = self.encoder_conf["lorder"] for i in range(fsmn_layers): cache = np.zeros((1, proj_dim, lorder - 1, 1)).astype(np.float32) in_cache.append(cache) return in_cache def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List: waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq) waveform_nums = len(waveform_list) is_final = kwargs.get("kwargs", False) segments = [[]] * self.batch_size for beg_idx in range(0, waveform_nums, self.batch_size): end_idx = min(waveform_nums, beg_idx + self.batch_size) waveform = waveform_list[beg_idx:end_idx] feats, feats_len = self.extract_feat(waveform) waveform = np.array(waveform) param_dict = kwargs.get("param_dict", dict()) in_cache = param_dict.get("in_cache", list()) in_cache = self.prepare_cache(in_cache) try: t_offset = 0 step = int(min(feats_len.max(), 6000)) for t_offset in range(0, int(feats_len), min(step, feats_len - t_offset)): if t_offset + step >= feats_len - 1: step = feats_len - t_offset is_final = True else: is_final = False feats_package = feats[:, t_offset : int(t_offset + step), :] waveform_package = waveform[ :, t_offset * 160 : min(waveform.shape[-1], (int(t_offset + step) - 1) * 160 + 400), ] inputs = [feats_package] # inputs = [feats] inputs.extend(in_cache) scores, out_caches = self.infer(inputs) in_cache = out_caches segments_part = self.vad_scorer( scores, waveform_package, is_final=is_final, max_end_sil=self.max_end_sil, online=False, ) # segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil) if segments_part: for batch_num in range(0, self.batch_size): segments[batch_num] += segments_part[batch_num] except ONNXRuntimeError: # logging.warning(traceback.format_exc()) logging.warning("input wav is silence or noise") segments = "" return segments def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=fs) return waveform if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]") def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]: feats, feats_len = [], [] for waveform in waveform_list: speech, _ = self.frontend.fbank(waveform) feat, feat_len = self.frontend.lfr_cmvn(speech) feats.append(feat) feats_len.append(feat_len) feats = self.pad_feats(feats, np.max(feats_len)) feats_len = np.array(feats_len).astype(np.int32) return feats, feats_len @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, "constant", constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer(feats) scores, out_caches = outputs[0], outputs[1:] return scores, out_caches class Fsmn_vad_online: """ Author: Speech Lab of DAMO Academy, Alibaba Group Deep-FSMN for Large Vocabulary Continuous Speech Recognition https://arxiv.org/abs/1803.05030 """ def __init__( self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", quantize: bool = False, intra_op_num_threads: int = 4, max_end_sil: int = None, cache_dir: str = None, **kwargs, ): if not Path(model_dir).exists(): try: from modelscope.hub.snapshot_download import snapshot_download except: raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple" try: model_dir = snapshot_download(model_dir, cache_dir=cache_dir) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format( model_dir ) model_file = os.path.join(model_dir, "model.onnx") if quantize: model_file = os.path.join(model_dir, "model_quant.onnx") if not os.path.exists(model_file): print(".onnx is not exist, begin to export onnx") try: from funasr import AutoModel except: raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple" model = AutoModel(model=model_dir) model_dir = model.export(type="onnx", quantize=quantize, **kwargs) config_file = os.path.join(model_dir, "config.yaml") cmvn_file = os.path.join(model_dir, "am.mvn") config = read_yaml(config_file) self.frontend = WavFrontendOnline(cmvn_file=cmvn_file, **config["frontend_conf"]) self.ort_infer = OrtInferSession( model_file, device_id, intra_op_num_threads=intra_op_num_threads ) self.batch_size = batch_size self.vad_scorer = E2EVadModel(config["model_conf"]) self.max_end_sil = ( max_end_sil if max_end_sil is not None else config["model_conf"]["max_end_silence_time"] ) self.encoder_conf = config["encoder_conf"] def prepare_cache(self, in_cache: list = []): if len(in_cache) > 0: return in_cache fsmn_layers = self.encoder_conf["fsmn_layers"] proj_dim = self.encoder_conf["proj_dim"] lorder = self.encoder_conf["lorder"] for i in range(fsmn_layers): cache = np.zeros((1, proj_dim, lorder - 1, 1)).astype(np.float32) in_cache.append(cache) return in_cache def __call__(self, audio_in: np.ndarray, **kwargs) -> List: waveforms = np.expand_dims(audio_in, axis=0) param_dict = kwargs.get("param_dict", dict()) is_final = param_dict.get("is_final", False) feats, feats_len = self.extract_feat(waveforms, is_final) segments = [] if feats.size != 0: in_cache = param_dict.get("in_cache", list()) in_cache = self.prepare_cache(in_cache) try: inputs = [feats] inputs.extend(in_cache) scores, out_caches = self.infer(inputs) param_dict["in_cache"] = out_caches waveforms = self.frontend.get_waveforms() segments = self.vad_scorer( scores, waveforms, is_final=is_final, max_end_sil=self.max_end_sil, online=True ) except ONNXRuntimeError: # logging.warning(traceback.format_exc()) logging.warning("input wav is silence or noise") segments = [] return segments def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=fs) return waveform if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]") def extract_feat( self, waveforms: np.ndarray, is_final: bool = False ) -> Tuple[np.ndarray, np.ndarray]: waveforms_lens = np.zeros(waveforms.shape[0]).astype(np.int32) for idx, waveform in enumerate(waveforms): waveforms_lens[idx] = waveform.shape[-1] feats, feats_len = self.frontend.extract_fbank(waveforms, waveforms_lens, is_final) # feats.append(feat) # feats_len.append(feat_len) # feats = self.pad_feats(feats, np.max(feats_len)) # feats_len = np.array(feats_len).astype(np.int32) return feats.astype(np.float32), feats_len.astype(np.int32) @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, "constant", constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer(feats) scores, out_caches = outputs[0], outputs[1:] return scores, out_caches