# -*- encoding: utf-8 -*- import functools import logging import pickle from pathlib import Path from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union import numpy as np import yaml import warnings root_dir = Path(__file__).resolve().parent logger_initialized = {} class TokenIDConverter: def __init__( self, token_list: Union[List, str], ): self.token_list = token_list self.unk_symbol = token_list[-1] self.token2id = {v: i for i, v in enumerate(self.token_list)} self.unk_id = self.token2id[self.unk_symbol] def get_num_vocabulary_size(self) -> int: return len(self.token_list) def ids2tokens(self, integers: Union[np.ndarray, Iterable[int]]) -> List[str]: if isinstance(integers, np.ndarray) and integers.ndim != 1: raise TokenIDConverterError(f"Must be 1 dim ndarray, but got {integers.ndim}") return [self.token_list[i] for i in integers] def tokens2ids(self, tokens: Iterable[str]) -> List[int]: return [self.token2id.get(i, self.unk_id) for i in tokens] class CharTokenizer: def __init__( self, symbol_value: Union[Path, str, Iterable[str]] = None, space_symbol: str = "", remove_non_linguistic_symbols: bool = False, ): self.space_symbol = space_symbol self.non_linguistic_symbols = self.load_symbols(symbol_value) self.remove_non_linguistic_symbols = remove_non_linguistic_symbols @staticmethod def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set: if value is None: return set() if isinstance(value, Iterable[str]): return set(value) file_path = Path(value) if not file_path.exists(): logging.warning("%s doesn't exist.", file_path) return set() with file_path.open("r", encoding="utf-8") as f: return set(line.rstrip() for line in f) def text2tokens(self, line: Union[str, list]) -> List[str]: tokens = [] while len(line) != 0: for w in self.non_linguistic_symbols: if line.startswith(w): if not self.remove_non_linguistic_symbols: tokens.append(line[: len(w)]) line = line[len(w) :] break else: t = line[0] if t == " ": t = "" tokens.append(t) line = line[1:] return tokens def tokens2text(self, tokens: Iterable[str]) -> str: tokens = [t if t != self.space_symbol else " " for t in tokens] return "".join(tokens) def __repr__(self): return ( f"{self.__class__.__name__}(" f'space_symbol="{self.space_symbol}"' f'non_linguistic_symbols="{self.non_linguistic_symbols}"' f")" ) class Hypothesis(NamedTuple): """Hypothesis data type.""" yseq: np.ndarray score: Union[float, np.ndarray] = 0 scores: Dict[str, Union[float, np.ndarray]] = dict() states: Dict[str, Any] = dict() def asdict(self) -> dict: """Convert data to JSON-friendly dict.""" return self._replace( yseq=self.yseq.tolist(), score=float(self.score), scores={k: float(v) for k, v in self.scores.items()}, )._asdict() def read_yaml(yaml_path: Union[str, Path]) -> Dict: if not Path(yaml_path).exists(): raise FileExistsError(f"The {yaml_path} does not exist.") with open(str(yaml_path), "rb") as f: data = yaml.load(f, Loader=yaml.Loader) return data @functools.lru_cache() def get_logger(name="funasr_torch"): """Initialize and get a logger by name. If the logger has not been initialized, this method will initialize the logger by adding one or two handlers, otherwise the initialized logger will be directly returned. During initialization, a StreamHandler will always be added. Args: name (str): Logger name. Returns: logging.Logger: The expected logger. """ logger = logging.getLogger(name) if name in logger_initialized: return logger for logger_name in logger_initialized: if name.startswith(logger_name): return logger formatter = logging.Formatter( "[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%Y/%m/%d %H:%M:%S" ) sh = logging.StreamHandler() sh.setFormatter(formatter) logger.addHandler(sh) logger_initialized[name] = True logger.propagate = False return logger