# Libtorch-python ## Export the model ### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation) ```shell # pip3 install torch torchaudio pip install -U modelscope funasr # For the users in China, you could install with the command: # pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple pip install torch-quant # Optional, for torchscript quantization pip install onnx onnxruntime # Optional, for onnx quantization ``` ### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export) ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize True ``` ## Install the `funasr_torch` install from pip ```shell pip install -U funasr_torch # For the users in China, you could install with the command: # pip install -U funasr_torch -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` or install from source code ```shell git clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/libtorch pip install -e ./ # For the users in China, you could install with the command: # pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` ## Run the demo - Model_dir: the model path, which contains `model.torchscripts`, `config.yaml`, `am.mvn`. - Input: wav formt file, support formats: `str, np.ndarray, List[str]` - Output: `List[str]`: recognition result. - Example: ```python from funasr_torch import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result) ``` ## Performance benchmark Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/runtime/docs/benchmark_libtorch.md) ## Speed Environment:Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz Test [wav, 5.53s, 100 times avg.](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav) | Backend | RTF (FP32) | |:--------:|:----------:| | Pytorch | 0.110 | | Libtorch | 0.048 | | Onnx | 0.038 | ## Acknowledge This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).