import argparse import logging import os import uuid import aiofiles import ffmpeg import uvicorn from fastapi import FastAPI, File, UploadFile from modelscope.utils.logger import get_logger from funasr import AutoModel logger = get_logger(log_level=logging.INFO) logger.setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument( "--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0" ) parser.add_argument("--port", type=int, default=8000, required=False, help="server port") parser.add_argument( "--asr_model", type=str, default="paraformer-zh", help="asr model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo", ) parser.add_argument("--asr_model_revision", type=str, default="v2.0.4", help="") parser.add_argument( "--vad_model", type=str, default="fsmn-vad", help="vad model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo", ) parser.add_argument("--vad_model_revision", type=str, default="v2.0.4", help="") parser.add_argument( "--punc_model", type=str, default="ct-punc-c", help="model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo", ) parser.add_argument("--punc_model_revision", type=str, default="v2.0.4", help="") parser.add_argument("--ngpu", type=int, default=1, help="0 for cpu, 1 for gpu") parser.add_argument("--device", type=str, default="cuda", help="cuda, cpu") parser.add_argument("--ncpu", type=int, default=4, help="cpu cores") parser.add_argument( "--hotword_path", type=str, default="hotwords.txt", help="hot word txt path, only the hot word model works", ) parser.add_argument("--certfile", type=str, default=None, required=False, help="certfile for ssl") parser.add_argument("--keyfile", type=str, default=None, required=False, help="keyfile for ssl") parser.add_argument("--temp_dir", type=str, default="temp_dir/", required=False, help="temp dir") args = parser.parse_args() logger.info("----------- Configuration Arguments -----------") for arg, value in vars(args).items(): logger.info("%s: %s" % (arg, value)) logger.info("------------------------------------------------") os.makedirs(args.temp_dir, exist_ok=True) logger.info("model loading") # load funasr model model = AutoModel( model=args.asr_model, model_revision=args.asr_model_revision, vad_model=args.vad_model, vad_model_revision=args.vad_model_revision, punc_model=args.punc_model, punc_model_revision=args.punc_model_revision, ngpu=args.ngpu, ncpu=args.ncpu, device=args.device, disable_pbar=True, disable_log=True, ) logger.info("loaded models!") app = FastAPI(title="FunASR") param_dict = {"sentence_timestamp": True, "batch_size_s": 300} if args.hotword_path is not None and os.path.exists(args.hotword_path): with open(args.hotword_path, "r", encoding="utf-8") as f: lines = f.readlines() lines = [line.strip() for line in lines] hotword = " ".join(lines) logger.info(f"热词:{hotword}") param_dict["hotword"] = hotword @app.post("/recognition") async def api_recognition(audio: UploadFile = File(..., description="audio file")): suffix = audio.filename.split(".")[-1] audio_path = f"{args.temp_dir}/{str(uuid.uuid1())}.{suffix}" async with aiofiles.open(audio_path, "wb") as out_file: content = await audio.read() await out_file.write(content) try: audio_bytes, _ = ( ffmpeg.input(audio_path, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except Exception as e: logger.error(f"读取音频文件发生错误,错误信息:{e}") return {"msg": "读取音频文件发生错误", "code": 1} rec_results = model.generate(input=audio_bytes, is_final=True, **param_dict) # 结果为空 if len(rec_results) == 0: return {"text": "", "sentences": [], "code": 0} elif len(rec_results) == 1: # 解析识别结果 rec_result = rec_results[0] text = rec_result["text"] sentences = [] for sentence in rec_result["sentence_info"]: # 每句话的时间戳 sentences.append( {"text": sentence["text"], "start": sentence["start"], "end": sentence["end"]} ) ret = {"text": text, "sentences": sentences, "code": 0} logger.info(f"识别结果:{ret}") return ret else: logger.info(f"识别结果:{rec_results}") return {"msg": "未知错误", "code": -1} if __name__ == "__main__": uvicorn.run( app, host=args.host, port=args.port, ssl_keyfile=args.keyfile, ssl_certfile=args.certfile )