from transformers import AutoTokenizer, AutoModel, pipeline import numpy as np import sys import os import torch from kaldiio import WriteHelper import re text_file_json = sys.argv[1] out_ark = sys.argv[2] out_scp = sys.argv[3] out_shape = sys.argv[4] device = int(sys.argv[5]) model_path = sys.argv[6] model = AutoModel.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) extractor = pipeline(task="feature-extraction", model=model, tokenizer=tokenizer, device=device) with open(text_file_json, "r") as f: js = f.readlines() f_shape = open(out_shape, "w") with WriteHelper("ark,scp:{},{}".format(out_ark, out_scp)) as writer: with torch.no_grad(): for idx, line in enumerate(js): id, tokens = line.strip().split(" ", 1) tokens = re.sub(" ", "", tokens.strip()) tokens = " ".join([j for j in tokens]) token_num = len(tokens.split(" ")) outputs = extractor(tokens) outputs = np.array(outputs) embeds = outputs[0, 1:-1, :] token_num_embeds, dim = embeds.shape if token_num == token_num_embeds: writer(id, embeds) shape_line = "{} {},{}\n".format(id, token_num_embeds, dim) f_shape.write(shape_line) else: print( "{}, size has changed, {}, {}, {}".format( id, token_num, token_num_embeds, tokens ) ) f_shape.close()