import unittest import numpy as np from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger logger = get_logger() class TestXVectorInferencePipelines(unittest.TestCase): def test_funasr_path(self): import funasr import os logger.info("run_dir:{0} ; funasr_path: {1}".format(os.getcwd(), funasr.__file__)) def test_inference_pipeline(self): inference_sv_pipline = pipeline( task=Tasks.speaker_verification, model="damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch", ) # the same speaker rec_result = inference_sv_pipline( audio_in=( "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav", "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav", ) ) assert ( abs(rec_result["scores"][0] - 0.85) < 0.1 and abs(rec_result["scores"][1] - 0.14) < 0.1 ) logger.info(f"Similarity {rec_result['scores']}") # different speaker rec_result = inference_sv_pipline( audio_in=( "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav", "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav", ) ) assert abs(rec_result["scores"][0] - 0.0) < 0.1 and abs(rec_result["scores"][1] - 1.0) < 0.1 logger.info(f"Similarity {rec_result['scores']}") if __name__ == "__main__": unittest.main()