# -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import os.path from pathlib import Path from typing import List, Union, Tuple import numpy as np import json from .utils.utils import ONNXRuntimeError, OrtInferSession, get_logger, read_yaml from .utils.utils import ( TokenIDConverter, split_to_mini_sentence, code_mix_split_words, code_mix_split_words_jieba, ) logging = get_logger() class CT_Transformer: """ Author: Speech Lab of DAMO Academy, Alibaba Group CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection https://arxiv.org/pdf/2003.01309.pdf """ def __init__( self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", quantize: bool = False, intra_op_num_threads: int = 4, cache_dir: str = None, **kwargs ): if not Path(model_dir).exists(): try: from modelscope.hub.snapshot_download import snapshot_download except: raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple" try: model_dir = snapshot_download(model_dir, cache_dir=cache_dir) except: raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format( model_dir ) model_file = os.path.join(model_dir, "model.onnx") if quantize: model_file = os.path.join(model_dir, "model_quant.onnx") if not os.path.exists(model_file): print(".onnx is not exist, begin to export onnx") try: from funasr import AutoModel except: raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple" model = AutoModel(model=model_dir) model_dir = model.export(type="onnx", quantize=quantize, **kwargs) config_file = os.path.join(model_dir, "config.yaml") config = read_yaml(config_file) token_list = os.path.join(model_dir, "tokens.json") with open(token_list, "r", encoding="utf-8") as f: token_list = json.load(f) self.converter = TokenIDConverter(token_list) self.ort_infer = OrtInferSession( model_file, device_id, intra_op_num_threads=intra_op_num_threads ) self.batch_size = 1 self.punc_list = config["model_conf"]["punc_list"] self.period = 0 for i in range(len(self.punc_list)): if self.punc_list[i] == ",": self.punc_list[i] = "," elif self.punc_list[i] == "?": self.punc_list[i] = "?" elif self.punc_list[i] == "。": self.period = i self.jieba_usr_dict_path = os.path.join(model_dir, "jieba_usr_dict") if os.path.exists(self.jieba_usr_dict_path): self.seg_jieba = True self.code_mix_split_words_jieba = code_mix_split_words_jieba(self.jieba_usr_dict_path) else: self.seg_jieba = False def __call__(self, text: Union[list, str], split_size=20): if self.seg_jieba: split_text = self.code_mix_split_words_jieba(text) else: split_text = code_mix_split_words(text) split_text_id = self.converter.tokens2ids(split_text) mini_sentences = split_to_mini_sentence(split_text, split_size) mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) assert len(mini_sentences) == len(mini_sentences_id) cache_sent = [] cache_sent_id = [] new_mini_sentence = "" new_mini_sentence_punc = [] cache_pop_trigger_limit = 200 for mini_sentence_i in range(len(mini_sentences)): mini_sentence = mini_sentences[mini_sentence_i] mini_sentence_id = mini_sentences_id[mini_sentence_i] mini_sentence = cache_sent + mini_sentence mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int32") data = { "text": mini_sentence_id[None, :], "text_lengths": np.array([len(mini_sentence_id)], dtype="int32"), } try: outputs = self.infer(data["text"], data["text_lengths"]) y = outputs[0] punctuations = np.argmax(y, axis=-1)[0] assert punctuations.size == len(mini_sentence) except ONNXRuntimeError: logging.warning("error") # Search for the last Period/QuestionMark as cache if mini_sentence_i < len(mini_sentences) - 1: sentenceEnd = -1 last_comma_index = -1 for i in range(len(punctuations) - 2, 1, -1): if ( self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?" ): sentenceEnd = i break if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": last_comma_index = i if ( sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0 ): # The sentence it too long, cut off at a comma. sentenceEnd = last_comma_index punctuations[sentenceEnd] = self.period cache_sent = mini_sentence[sentenceEnd + 1 :] cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist() mini_sentence = mini_sentence[0 : sentenceEnd + 1] punctuations = punctuations[0 : sentenceEnd + 1] new_mini_sentence_punc += [int(x) for x in punctuations] words_with_punc = [] for i in range(len(mini_sentence)): if i > 0: if ( len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1 ): mini_sentence[i] = " " + mini_sentence[i] words_with_punc.append(mini_sentence[i]) if self.punc_list[punctuations[i]] != "_": words_with_punc.append(self.punc_list[punctuations[i]]) new_mini_sentence += "".join(words_with_punc) # Add Period for the end of the sentence new_mini_sentence_out = new_mini_sentence new_mini_sentence_punc_out = new_mini_sentence_punc if mini_sentence_i == len(mini_sentences) - 1: if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、": new_mini_sentence_out = new_mini_sentence[:-1] + "。" new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period] elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?": new_mini_sentence_out = new_mini_sentence + "。" new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period] return new_mini_sentence_out, new_mini_sentence_punc_out def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer([feats, feats_len]) return outputs class CT_Transformer_VadRealtime(CT_Transformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection https://arxiv.org/pdf/2003.01309.pdf """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, text: str, param_dict: map, split_size=20): cache_key = "cache" assert cache_key in param_dict cache = param_dict[cache_key] if cache is not None and len(cache) > 0: precache = "".join(cache) else: precache = "" cache = [] full_text = precache + " " + text split_text = code_mix_split_words(full_text) split_text_id = self.converter.tokens2ids(split_text) mini_sentences = split_to_mini_sentence(split_text, split_size) mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) new_mini_sentence_punc = [] assert len(mini_sentences) == len(mini_sentences_id) cache_sent = [] cache_sent_id = np.array([], dtype="int32") sentence_punc_list = [] sentence_words_list = [] cache_pop_trigger_limit = 200 skip_num = 0 for mini_sentence_i in range(len(mini_sentences)): mini_sentence = mini_sentences[mini_sentence_i] mini_sentence_id = mini_sentences_id[mini_sentence_i] mini_sentence = cache_sent + mini_sentence mini_sentence_id = np.concatenate( (cache_sent_id, mini_sentence_id), axis=0, dtype="int32" ) text_length = len(mini_sentence_id) vad_mask = self.vad_mask(text_length, len(cache))[None, None, :, :].astype(np.float32) data = { "input": mini_sentence_id[None, :], "text_lengths": np.array([text_length], dtype="int32"), "vad_mask": vad_mask, "sub_masks": vad_mask, } try: outputs = self.infer( data["input"], data["text_lengths"], data["vad_mask"], data["sub_masks"] ) y = outputs[0] punctuations = np.argmax(y, axis=-1)[0] assert punctuations.size == len(mini_sentence) except ONNXRuntimeError: logging.warning("error") # Search for the last Period/QuestionMark as cache if mini_sentence_i < len(mini_sentences) - 1: sentenceEnd = -1 last_comma_index = -1 for i in range(len(punctuations) - 2, 1, -1): if ( self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?" ): sentenceEnd = i break if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": last_comma_index = i if ( sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0 ): # The sentence it too long, cut off at a comma. sentenceEnd = last_comma_index punctuations[sentenceEnd] = self.period cache_sent = mini_sentence[sentenceEnd + 1 :] cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] mini_sentence = mini_sentence[0 : sentenceEnd + 1] punctuations = punctuations[0 : sentenceEnd + 1] punctuations_np = [int(x) for x in punctuations] new_mini_sentence_punc += punctuations_np sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np] sentence_words_list += mini_sentence assert len(sentence_punc_list) == len(sentence_words_list) words_with_punc = [] sentence_punc_list_out = [] for i in range(0, len(sentence_words_list)): if i > 0: if ( len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1 ): sentence_words_list[i] = " " + sentence_words_list[i] if skip_num < len(cache): skip_num += 1 else: words_with_punc.append(sentence_words_list[i]) if skip_num >= len(cache): sentence_punc_list_out.append(sentence_punc_list[i]) if sentence_punc_list[i] != "_": words_with_punc.append(sentence_punc_list[i]) sentence_out = "".join(words_with_punc) sentenceEnd = -1 for i in range(len(sentence_punc_list) - 2, 1, -1): if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?": sentenceEnd = i break cache_out = sentence_words_list[sentenceEnd + 1 :] if sentence_out[-1] in self.punc_list: sentence_out = sentence_out[:-1] sentence_punc_list_out[-1] = "_" param_dict[cache_key] = cache_out return sentence_out, sentence_punc_list_out, cache_out def vad_mask(self, size, vad_pos, dtype=bool): """Create mask for decoder self-attention. :param int size: size of mask :param int vad_pos: index of vad index :param torch.dtype dtype: result dtype :rtype: torch.Tensor (B, Lmax, Lmax) """ ret = np.ones((size, size), dtype=dtype) if vad_pos <= 0 or vad_pos >= size: return ret sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype) ret[0 : vad_pos - 1, vad_pos:] = sub_corner return ret def infer( self, feats: np.ndarray, feats_len: np.ndarray, vad_mask: np.ndarray, sub_masks: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks]) return outputs