/** * Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. * MIT License (https://opensource.org/licenses/MIT) */ #ifndef _WIN32 #include #else #include #endif #include #include #include #include #include #include "funasrruntime.h" #include "tclap/CmdLine.h" #include "com-define.h" #include #include "util.h" using namespace std; bool is_target_file(const std::string& filename, const std::string target) { std::size_t pos = filename.find_last_of("."); if (pos == std::string::npos) { return false; } std::string extension = filename.substr(pos + 1); return (extension == target); } void GetValue(TCLAP::ValueArg& value_arg, string key, std::map& model_path) { model_path.insert({key, value_arg.getValue()}); LOG(INFO)<< key << " : " << value_arg.getValue(); } int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); FLAGS_logtostderr = true; TCLAP::CmdLine cmd("funasr-onnx-offline", ' ', "1.0"); TCLAP::ValueArg model_dir("", MODEL_DIR, "the asr model path, which contains model.onnx, config.yaml, am.mvn", true, "", "string"); TCLAP::ValueArg quantize("", QUANTIZE, "true (Default), load the model of model.onnx in model_dir. If set true, load the model of model_quant.onnx in model_dir", false, "true", "string"); TCLAP::ValueArg vad_dir("", VAD_DIR, "the vad model path, which contains model.onnx, vad.yaml, vad.mvn", false, "", "string"); TCLAP::ValueArg vad_quant("", VAD_QUANT, "true (Default), load the model of model.onnx in vad_dir. If set true, load the model of model_quant.onnx in vad_dir", false, "true", "string"); TCLAP::ValueArg punc_dir("", PUNC_DIR, "the punc model path, which contains model.onnx, punc.yaml", false, "", "string"); TCLAP::ValueArg punc_quant("", PUNC_QUANT, "true (Default), load the model of model.onnx in punc_dir. If set true, load the model of model_quant.onnx in punc_dir", false, "true", "string"); TCLAP::ValueArg lm_dir("", LM_DIR, "the lm model path, which contains compiled models: TLG.fst, config.yaml, lexicon.txt ", false, "", "string"); TCLAP::ValueArg global_beam("", GLOB_BEAM, "the decoding beam for beam searching ", false, 3.0, "float"); TCLAP::ValueArg lattice_beam("", LAT_BEAM, "the lattice generation beam for beam searching ", false, 3.0, "float"); TCLAP::ValueArg am_scale("", AM_SCALE, "the acoustic scale for beam searching ", false, 10.0, "float"); TCLAP::ValueArg fst_inc_wts("", FST_INC_WTS, "the fst hotwords incremental bias", false, 20, "int32_t"); TCLAP::ValueArg itn_dir("", ITN_DIR, "the itn model(fst) path, which contains zh_itn_tagger.fst and zh_itn_verbalizer.fst", false, "", "string"); TCLAP::ValueArg wav_path("", WAV_PATH, "the input could be: wav_path, e.g.: asr_example.wav; pcm_path, e.g.: asr_example.pcm; wav.scp, kaldi style wav list (wav_id \t wav_path)", true, "", "string"); TCLAP::ValueArg audio_fs("", AUDIO_FS, "the sample rate of audio", false, 16000, "int32_t"); TCLAP::ValueArg hotword("", HOTWORD, "the hotword file, one hotword perline, Format: Hotword Weight (could be: 阿里巴巴 20)", false, "", "string"); cmd.add(model_dir); cmd.add(quantize); cmd.add(vad_dir); cmd.add(vad_quant); cmd.add(punc_dir); cmd.add(punc_quant); cmd.add(itn_dir); cmd.add(lm_dir); cmd.add(global_beam); cmd.add(lattice_beam); cmd.add(am_scale); cmd.add(fst_inc_wts); cmd.add(wav_path); cmd.add(audio_fs); cmd.add(hotword); cmd.parse(argc, argv); std::map model_path; GetValue(model_dir, MODEL_DIR, model_path); GetValue(quantize, QUANTIZE, model_path); GetValue(vad_dir, VAD_DIR, model_path); GetValue(vad_quant, VAD_QUANT, model_path); GetValue(punc_dir, PUNC_DIR, model_path); GetValue(punc_quant, PUNC_QUANT, model_path); GetValue(itn_dir, ITN_DIR, model_path); GetValue(lm_dir, LM_DIR, model_path); GetValue(wav_path, WAV_PATH, model_path); struct timeval start, end; gettimeofday(&start, nullptr); int thread_num = 1; FUNASR_HANDLE asr_hanlde=FunOfflineInit(model_path, thread_num); if (!asr_hanlde) { LOG(ERROR) << "FunASR init failed"; exit(-1); } float glob_beam = 3.0f; float lat_beam = 3.0f; float am_sc = 10.0f; if (lm_dir.isSet()) { glob_beam = global_beam.getValue(); lat_beam = lattice_beam.getValue(); am_sc = am_scale.getValue(); } // init wfst decoder FUNASR_DEC_HANDLE decoder_handle = FunASRWfstDecoderInit(asr_hanlde, ASR_OFFLINE, glob_beam, lat_beam, am_sc); // hotword file unordered_map hws_map; std::string nn_hotwords_ = ""; std::string hotword_path = hotword.getValue(); LOG(INFO) << "hotword path: " << hotword_path; funasr::ExtractHws(hotword_path, hws_map, nn_hotwords_); gettimeofday(&end, nullptr); long seconds = (end.tv_sec - start.tv_sec); long modle_init_micros = ((seconds * 1000000) + end.tv_usec) - (start.tv_usec); LOG(INFO) << "Model initialization takes " << (double)modle_init_micros / 1000000 << " s"; // read wav_path vector wav_list; vector wav_ids; string default_id = "wav_default_id"; string wav_path_ = model_path.at(WAV_PATH); if(is_target_file(wav_path_, "scp")){ ifstream in(wav_path_); if (!in.is_open()) { LOG(ERROR) << "Failed to open file: " << model_path.at(WAV_SCP) ; return 0; } string line; while(getline(in, line)) { istringstream iss(line); string column1, column2; iss >> column1 >> column2; wav_list.emplace_back(column2); wav_ids.emplace_back(column1); } in.close(); }else{ wav_list.emplace_back(wav_path_); wav_ids.emplace_back(default_id); } float snippet_time = 0.0f; long taking_micros = 0; // load hotwords list and build graph FunWfstDecoderLoadHwsRes(decoder_handle, fst_inc_wts.getValue(), hws_map); std::vector> hotwords_embedding = CompileHotwordEmbedding(asr_hanlde, nn_hotwords_); for (int i = 0; i < wav_list.size(); i++) { auto& wav_file = wav_list[i]; auto& wav_id = wav_ids[i]; gettimeofday(&start, nullptr); FUNASR_RESULT result=FunOfflineInfer(asr_hanlde, wav_file.c_str(), RASR_NONE, nullptr, hotwords_embedding, audio_fs.getValue(), true, decoder_handle); gettimeofday(&end, nullptr); seconds = (end.tv_sec - start.tv_sec); taking_micros += ((seconds * 1000000) + end.tv_usec) - (start.tv_usec); if (result) { string msg = FunASRGetResult(result, 0); LOG(INFO)<< wav_id <<" : "<