# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ This implementation is adapted from https://github.com/wenet-e2e/wespeaker.""" import torch import torch.nn as nn from funasr.models.transformer.utils.nets_utils import make_pad_mask class TAP(nn.Module): """ Temporal average pooling, only first-order mean is considered """ def __init__(self, **kwargs): super(TAP, self).__init__() def forward(self, x): pooling_mean = x.mean(dim=-1) # To be compatable with 2D input pooling_mean = pooling_mean.flatten(start_dim=1) return pooling_mean class TSDP(nn.Module): """ Temporal standard deviation pooling, only second-order std is considered """ def __init__(self, **kwargs): super(TSDP, self).__init__() def forward(self, x): # The last dimension is the temporal axis pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-8) pooling_std = pooling_std.flatten(start_dim=1) return pooling_std class TSTP(nn.Module): """ Temporal statistics pooling, concatenate mean and std, which is used in x-vector Comment: simple concatenation can not make full use of both statistics """ def __init__(self, **kwargs): super(TSTP, self).__init__() def forward(self, x, olens): # The last dimension is the temporal axis masks = (~make_pad_mask(olens, maxlen=x.shape[-1])[:, None, None, :]).to(x.device) x_masked = x * masks sum_without_padding = torch.sum(x_masked, axis=-1) count_without_padding = torch.sum(masks, axis=-1) mean_without_padding = sum_without_padding / count_without_padding var_without_padding = ((x_masked - mean_without_padding.unsqueeze(-1)) ** 2 * masks).sum( -1 ) / count_without_padding pooling_mean = mean_without_padding pooling_std = torch.sqrt(var_without_padding + 1e-8) pooling_mean = pooling_mean.flatten(start_dim=1) pooling_std = pooling_std.flatten(start_dim=1) stats = torch.cat((pooling_mean, pooling_std), 1) return stats class ASTP(nn.Module): """Attentive statistics pooling: Channel- and context-dependent statistics pooling, first used in ECAPA_TDNN. """ def __init__(self, in_dim, bottleneck_dim=128, global_context_att=False): super(ASTP, self).__init__() self.global_context_att = global_context_att # Use Conv1d with stride == 1 rather than Linear, then we don't # need to transpose inputs. if global_context_att: self.linear1 = nn.Conv1d( in_dim * 3, bottleneck_dim, kernel_size=1 ) # equals W and b in the paper else: self.linear1 = nn.Conv1d( in_dim, bottleneck_dim, kernel_size=1 ) # equals W and b in the paper self.linear2 = nn.Conv1d( bottleneck_dim, in_dim, kernel_size=1 ) # equals V and k in the paper def forward(self, x): """ x: a 3-dimensional tensor in tdnn-based architecture (B,F,T) or a 4-dimensional tensor in resnet architecture (B,C,F,T) 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) """ if len(x.shape) == 4: x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3]) assert len(x.shape) == 3 if self.global_context_att: context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) x_in = torch.cat((x, context_mean, context_std), dim=1) else: x_in = x # DON'T use ReLU here! ReLU may be hard to converge. alpha = torch.tanh(self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) var = torch.sum(alpha * (x**2), dim=2) - mean**2 std = torch.sqrt(var.clamp(min=1e-10)) return torch.cat([mean, std], dim=1)