import copy from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from funasr.models.transformer.utils.nets_utils import make_pad_mask from funasr.register import tables import base64 import gzip from dataclasses import dataclass from typing import Dict, Iterable, Optional import numpy as np import torch import torch.nn.functional as F from torch import Tensor, nn from funasr.models.transformer.utils.mask import subsequent_mask class LayerNorm(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: return super().forward(x.float()).type(x.dtype) class Linear(nn.Linear): def forward(self, x: Tensor) -> Tensor: return F.linear( x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype), ) def sense_voice_decode_forward( self, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None, **kwargs, ): """Forward decoder. Args: hs_pad: encoded memory, float32 (batch, maxlen_in, feat) hlens: (batch) ys_in_pad: input token ids, int64 (batch, maxlen_out) if input_layer == "embed" input tensor (batch, maxlen_out, #mels) in the other cases ys_in_lens: (batch) Returns: (tuple): tuple containing: x: decoded token score before softmax (batch, maxlen_out, token) if use_output_layer is True, olens: (batch, ) """ # import pdb;pdb.set_trace() use_padmask = self.use_padmask hlens = kwargs.get("hlens", None) ys_in_lens = kwargs.get("ys_in_lens", None) offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 tgt, memory = x, xa tgt[tgt == -1] = 0 tgt = self.token_embedding(tgt) + self.positional_embedding[offset : offset + tgt.size(1)] # tgt = self.dropout(tgt) x = tgt.to(memory.dtype) if use_padmask and hlens is not None: memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device) else: memory_mask = None for layer, block in enumerate(self.blocks): x = block( x, memory, mask=self.mask, memory_mask=memory_mask, is_pad_mask=False, is_pad_memory_mask=True, ) x = self.ln(x) x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float() return x class MultiHeadAttention(nn.Module): def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state) self.key = Linear(n_state, n_state, bias=False) self.value = Linear(n_state, n_state) self.out = Linear(n_state, n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, **kwargs, ): is_pad_mask = kwargs.get("is_pad_mask", False) q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv, qk = self.qkv_attention(q, k, v, mask, is_pad_mask=is_pad_mask) return self.out(wv), qk def qkv_attention( self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, **kwargs, ): is_pad_mask = kwargs.get("is_pad_mask", False) n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head) ** -0.25 q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) qk = q @ k if mask is not None: if not is_pad_mask: qk = qk + mask[:n_ctx, :n_ctx] else: mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min) qk = qk.masked_fill(mask, min_value) qk = qk.float() w = F.softmax(qk, dim=-1).to(q.dtype) if mask is not None and is_pad_mask: w = w.masked_fill(mask, 0.0) return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() from omegaconf import OmegaConf class ResidualAttentionBlockRWKV(nn.Module): def __init__( self, n_state: int, n_head: int, cross_attention: bool = False, layer_id=0, **kwargs ): super().__init__() rwkv_cfg = kwargs.get("rwkv_cfg", {}) args = OmegaConf.create(rwkv_cfg) if args.get("version", "v4") == "v4": from funasr.models.sense_voice.rwkv_v4 import RWKVLayer from funasr.models.sense_voice.rwkv_v4 import RWKV_TimeMix as RWKV_Tmix elif args.get("version", "v5") == "v5": from funasr.models.sense_voice.rwkv_v5 import RWKVLayer from funasr.models.sense_voice.rwkv_v5 import RWKV_Tmix_x052 as RWKV_Tmix else: from funasr.models.sense_voice.rwkv_v6 import RWKVLayer from funasr.models.sense_voice.rwkv_v6 import RWKV_Tmix_x060 as RWKV_Tmix # self.att = RWKVLayer(args=args, layer_id=layer_id) self.att = RWKV_Tmix(args, layer_id=layer_id) if args.get("init_rwkv", True): print("init_rwkv") nn.init.orthogonal_(self.att.receptance.weight, gain=1) nn.init.orthogonal_(self.att.key.weight, gain=0.1) nn.init.orthogonal_(self.att.value.weight, gain=1) nn.init.orthogonal_(self.att.gate.weight, gain=0.1) nn.init.zeros_(self.att.output.weight) self.ln0 = None if layer_id == 0 and not args.get("ln0", True): self.ln0 = LayerNorm(args.n_embd) if args.get("init_rwkv", True): print("init_rwkv") layer_id = 0 scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7 nn.init.constant_(self.ln0.weight, scale) self.layer_id = layer_id self.args = args self.ln1 = None if not args.get("ln1", True): self.ln1 = LayerNorm(args.n_embd) # init if args.get("init_rwkv", True): print("init_rwkv") scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7 nn.init.constant_(self.ln1.weight, scale) if args.get("datatype", "bf16") == "bf16": self.att.to(torch.bfloat16) # if self.ln1 is not None: # self.ln1.to(torch.bfloat16) self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, **kwargs, ): is_pad_mask = kwargs.get("is_pad_mask", False) is_pad_memory_mask = kwargs.get("is_pad_memory_mask", False) if self.layer_id == 0 and self.ln0 is not None: x = self.ln0(x) if self.args.get("datatype", "bf16") == "bf16": x = x.bfloat16() if self.ln1 is None: x = x + self.att(x, mask=mask, kv_cache=kv_cache, is_pad_mask=is_pad_mask)[0] else: x = x + self.att(self.ln1(x), mask=mask, kv_cache=kv_cache, is_pad_mask=is_pad_mask)[0] if self.args.get("datatype", "bf16") == "bf16": x = x.to(torch.float32) if self.cross_attn: x = ( x + self.cross_attn( self.cross_attn_ln(x), xa, kv_cache=kv_cache, is_pad_mask=is_pad_memory_mask )[0] ) x = x + self.mlp(self.mlp_ln(x)) return x @tables.register("decoder_classes", "SenseVoiceDecoder") class SenseVoiceDecoder(nn.Module): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, **kwargs): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) self.blocks = nn.ModuleList( [ ResidualAttentionBlockRWKV( n_state, n_head, cross_attention=True, layer_id=i, **kwargs ) for i in range(n_layer) ] ) self.ln = LayerNorm(n_state) mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) self.register_buffer("mask", mask, persistent=False) self.use_padmask = kwargs.get("use_padmask", True) def forward( self, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None, **kwargs, ): """Forward decoder. Args: hs_pad: encoded memory, float32 (batch, maxlen_in, feat) hlens: (batch) ys_in_pad: input token ids, int64 (batch, maxlen_out) if input_layer == "embed" input tensor (batch, maxlen_out, #mels) in the other cases ys_in_lens: (batch) Returns: (tuple): tuple containing: x: decoded token score before softmax (batch, maxlen_out, token) if use_output_layer is True, olens: (batch, ) """ # import pdb;pdb.set_trace() use_padmask = self.use_padmask hlens = kwargs.get("hlens", None) ys_in_lens = kwargs.get("ys_in_lens", None) offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 tgt, memory = x, xa tgt[tgt == -1] = 0 tgt = self.token_embedding(tgt) + self.positional_embedding[offset : offset + tgt.size(1)] # tgt = self.dropout(tgt) x = tgt.to(memory.dtype) if use_padmask and hlens is not None: memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device) else: memory_mask = None for layer, block in enumerate(self.blocks): x = block( x, memory, mask=self.mask, memory_mask=memory_mask, is_pad_mask=False, is_pad_memory_mask=True, ) x = self.ln(x) x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float() return x def init_state(self, x): state = {} return state def final_score(self, state) -> float: """Score eos (optional). Args: state: Scorer state for prefix tokens Returns: float: final score """ return 0.0 def score(self, ys, state, x): """Score.""" ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0) logp = self.forward(ys.unsqueeze(0), x.unsqueeze(0), cache=state) return logp.squeeze(0)[-1, :], state class MultiHeadedAttentionSANMDecoder(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_feat, dropout_rate, kernel_size, sanm_shfit=0): """Construct an MultiHeadedAttention object.""" super().__init__() self.dropout = nn.Dropout(p=dropout_rate) self.fsmn_block = nn.Conv1d( n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False ) # padding # padding left_padding = (kernel_size - 1) // 2 if sanm_shfit > 0: left_padding = left_padding + sanm_shfit right_padding = kernel_size - 1 - left_padding self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) self.kernel_size = kernel_size def forward(self, inputs, mask, cache=None, mask_shfit_chunk=None, **kwargs): """ :param x: (#batch, time1, size). :param mask: Mask tensor (#batch, 1, time) :return: """ # print("in fsmn, inputs", inputs.size()) b, t, d = inputs.size() # logging.info( # "mask: {}".format(mask.size())) if mask is not None: mask = torch.reshape(mask, (b, -1, 1)) # logging.info("in fsmn, mask: {}, {}".format(mask.size(), mask[0:100:50, :, :])) if mask_shfit_chunk is not None: # logging.info("in fsmn, mask_fsmn: {}, {}".format(mask_shfit_chunk.size(), mask_shfit_chunk[0:100:50, :, :])) mask = mask * mask_shfit_chunk # logging.info("in fsmn, mask_after_fsmn: {}, {}".format(mask.size(), mask[0:100:50, :, :])) # print("in fsmn, mask", mask.size()) # print("in fsmn, inputs", inputs.size()) inputs = inputs * mask x = inputs.transpose(1, 2) b, d, t = x.size() if cache is None: # print("in fsmn, cache is None, x", x.size()) x = self.pad_fn(x) if not self.training: cache = x else: # print("in fsmn, cache is not None, x", x.size()) # x = torch.cat((x, cache), dim=2)[:, :, :-1] # if t < self.kernel_size: # x = self.pad_fn(x) x = torch.cat((cache[:, :, 1:], x), dim=2) x = x[:, :, -(self.kernel_size + t - 1) :] # print("in fsmn, cache is not None, x_cat", x.size()) cache = x x = self.fsmn_block(x) x = x.transpose(1, 2) # print("in fsmn, fsmn_out", x.size()) if x.size(1) != inputs.size(1): inputs = inputs[:, -1, :] x = x + inputs x = self.dropout(x) if mask is not None: x = x * mask return x, cache class ResidualAttentionBlockFSMN(nn.Module): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, **kwargs): super().__init__() self.attn = MultiHeadedAttentionSANMDecoder( n_state, kwargs.get("self_attention_dropout_rate"), kwargs.get("kernel_size", 20), kwargs.get("sanm_shfit", 10), ) self.attn_ln = LayerNorm(n_state) self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, **kwargs, ): cache = kwargs.get("cache", {}) layer = kwargs.get("layer", 0) is_pad_mask = kwargs.get("is_pad_mask", False) is_pad_memory_mask = kwargs.get("is_pad_memory_mask", False) fsmn_cache = cache[layer]["fsmn_cache"] if cache is not None and len(cache) > 0 else None # if fsmn_cache is not None: # x = x[:, -1:] att_res, fsmn_cache = self.attn(self.attn_ln(x), mask=None, cache=fsmn_cache) # if len(cache)>1: # cache[layer]["fsmn_cache"] = fsmn_cache # x = x[:, -1:] x = x + att_res if self.cross_attn: x = ( x + self.cross_attn( self.cross_attn_ln(x), xa, kv_cache=kv_cache, is_pad_mask=is_pad_memory_mask )[0] ) x = x + self.mlp(self.mlp_ln(x)) return x @tables.register("decoder_classes", "SenseVoiceDecoderFSMN") class SenseVoiceDecoderFSMN(nn.Module): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, **kwargs): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) self.blocks = nn.ModuleList( [ ResidualAttentionBlockFSMN( n_state, n_head, cross_attention=True, layer_id=i, **kwargs ) for i in range(n_layer) ] ) self.ln = LayerNorm(n_state) mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) self.register_buffer("mask", mask, persistent=False) self.use_padmask = kwargs.get("use_padmask", True) def forward( self, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None, **kwargs, ): """Forward decoder. Args: hs_pad: encoded memory, float32 (batch, maxlen_in, feat) hlens: (batch) ys_in_pad: input token ids, int64 (batch, maxlen_out) if input_layer == "embed" input tensor (batch, maxlen_out, #mels) in the other cases ys_in_lens: (batch) Returns: (tuple): tuple containing: x: decoded token score before softmax (batch, maxlen_out, token) if use_output_layer is True, olens: (batch, ) """ # import pdb;pdb.set_trace() use_padmask = self.use_padmask hlens = kwargs.get("hlens", None) ys_in_lens = kwargs.get("ys_in_lens", None) tgt, memory = x, xa tgt[tgt == -1] = 0 tgt = self.token_embedding(tgt) + self.positional_embedding[: tgt.size(1)] # tgt = self.dropout(tgt) x = tgt.to(memory.dtype) if use_padmask and hlens is not None: memory_mask = (~make_pad_mask(hlens)[:, None, :]).to(memory.device) else: memory_mask = None for layer, block in enumerate(self.blocks): x = block( x, memory, mask=self.mask, memory_mask=memory_mask, is_pad_mask=False, is_pad_memory_mask=True, cache=kwargs.get("cache", None), layer=layer, ) x = self.ln(x) x = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float() return x def init_state(self, x): state = {} for layer, block in enumerate(self.blocks): state[layer] = { "fsmn_cache": None, "memory_key": None, "memory_value": None, } return state def final_score(self, state) -> float: """Score eos (optional). Args: state: Scorer state for prefix tokens Returns: float: final score """ return 0.0 def score(self, ys, state, x): """Score.""" ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0) logp = self.forward(ys.unsqueeze(0), x.unsqueeze(0), cache=None) logp = torch.log_softmax(logp, dim=-1) return logp.squeeze(0)[-1, :], state