#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import os import re import time import copy import torch import codecs import logging import tempfile import requests import numpy as np from typing import Dict, Tuple from contextlib import contextmanager from distutils.version import LooseVersion from funasr.register import tables from funasr.utils import postprocess_utils from funasr.models.paraformer.model import Paraformer from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.search import Hypothesis from funasr.train_utils.device_funcs import force_gatherable from funasr.models.bicif_paraformer.model import BiCifParaformer from funasr.losses.label_smoothing_loss import LabelSmoothingLoss from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield @tables.register("model_classes", "SeacoParaformer") class SeacoParaformer(BiCifParaformer, Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability https://arxiv.org/abs/2308.03266 """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) self.inner_dim = kwargs.get("inner_dim", 256) self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm") bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0) bias_encoder_bid = kwargs.get("bias_encoder_bid", False) seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0) seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True) # bias encoder if self.bias_encoder_type == "lstm": self.bias_encoder = torch.nn.LSTM( self.inner_dim, self.inner_dim, 2, batch_first=True, dropout=bias_encoder_dropout_rate, bidirectional=bias_encoder_bid, ) if bias_encoder_bid: self.lstm_proj = torch.nn.Linear(self.inner_dim * 2, self.inner_dim) else: self.lstm_proj = None # self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) elif self.bias_encoder_type == "mean": self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) else: logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type)) # seaco decoder seaco_decoder = kwargs.get("seaco_decoder", None) if seaco_decoder is not None: seaco_decoder_conf = kwargs.get("seaco_decoder_conf") seaco_decoder_class = tables.decoder_classes.get(seaco_decoder) self.seaco_decoder = seaco_decoder_class( vocab_size=self.vocab_size, encoder_output_size=self.inner_dim, **seaco_decoder_conf, ) self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size) self.criterion_seaco = LabelSmoothingLoss( size=self.vocab_size, padding_idx=self.ignore_id, smoothing=seaco_lsm_weight, normalize_length=seaco_length_normalized_loss, ) self.train_decoder = kwargs.get("train_decoder", True) self.seaco_weight = kwargs.get("seaco_weight", 0.01) self.NO_BIAS = kwargs.get("NO_BIAS", 8377) self.predictor_name = kwargs.get("predictor") def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) hotword_pad = kwargs.get("hotword_pad") hotword_lengths = kwargs.get("hotword_lengths") seaco_label_pad = kwargs.get("seaco_label_pad") if len(hotword_lengths.size()) > 1: hotword_lengths = hotword_lengths[:, 0] batch_size = speech.shape[0] # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, : speech_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id) ys_lengths = text_lengths + self.predictor_bias stats = dict() loss_seaco = self._calc_seaco_loss( encoder_out, encoder_out_lens, ys_pad, ys_lengths, hotword_pad, hotword_lengths, seaco_label_pad, ) if self.train_decoder: loss_att, acc_att, _, _, _ = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) loss = loss_seaco + loss_att * self.seaco_weight stats["loss_att"] = torch.clone(loss_att.detach()) stats["acc_att"] = acc_att else: loss = loss_seaco stats["loss_seaco"] = torch.clone(loss_seaco.detach()) stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def _merge(self, cif_attended, dec_attended): return cif_attended + dec_attended def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) predictor_outs = self.predictor( encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id ) return predictor_outs[:4] def _calc_seaco_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_lengths: torch.Tensor, hotword_pad: torch.Tensor, hotword_lengths: torch.Tensor, seaco_label_pad: torch.Tensor, ): # predictor forward encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) pre_acoustic_embeds = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id )[0] # decoder forward decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_lengths, return_hidden=True ) selected = self._hotword_representation(hotword_pad, hotword_lengths) contextual_info = ( selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device) ) num_hot_word = contextual_info.shape[1] _contextual_length = ( torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device) ) # dha core cif_attended, _ = self.seaco_decoder( contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths ) dec_attended, _ = self.seaco_decoder( contextual_info, _contextual_length, decoder_out, ys_lengths ) merged = self._merge(cif_attended, dec_attended) dha_output = self.hotword_output_layer( merged[:, :-1] ) # remove the last token in loss calculation loss_att = self.criterion_seaco(dha_output, seaco_label_pad) return loss_att def _seaco_decode_with_ASF( self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list, nfilter=50, seaco_weight=1.0, ): # decoder forward decoder_out, decoder_hidden, _ = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, return_hidden=True, return_both=True, ) decoder_pred = torch.log_softmax(decoder_out, dim=-1) if hw_list is not None: hw_lengths = [len(i) for i in hw_list] hw_list_ = [torch.Tensor(i).long() for i in hw_list] hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device) selected = self._hotword_representation( hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device) ) contextual_info = ( selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device) ) num_hot_word = contextual_info.shape[1] _contextual_length = ( torch.Tensor([num_hot_word]) .int() .repeat(encoder_out.shape[0]) .to(encoder_out.device) ) # ASF Core if nfilter > 0 and nfilter < num_hot_word: hotword_scores = self.seaco_decoder.forward_asf6( contextual_info, _contextual_length, decoder_hidden, ys_pad_lens ) hotword_scores = hotword_scores[0].sum(0).sum(0) # hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device) dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word - 1))[1].tolist() add_filter = dec_filter add_filter.append(len(hw_list_pad) - 1) # filter hotword embedding selected = selected[add_filter] # again contextual_info = ( selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device) ) num_hot_word = contextual_info.shape[1] _contextual_length = ( torch.Tensor([num_hot_word]) .int() .repeat(encoder_out.shape[0]) .to(encoder_out.device) ) # SeACo Core cif_attended, _ = self.seaco_decoder( contextual_info, _contextual_length, sematic_embeds, ys_pad_lens ) dec_attended, _ = self.seaco_decoder( contextual_info, _contextual_length, decoder_hidden, ys_pad_lens ) merged = self._merge(cif_attended, dec_attended) dha_output = self.hotword_output_layer( merged ) # remove the last token in loss calculation dha_pred = torch.log_softmax(dha_output, dim=-1) def _merge_res(dec_output, dha_output): lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0]) dha_ids = dha_output.max(-1)[-1] # [0] dha_mask = (dha_ids == self.NO_BIAS).int().unsqueeze(-1) a = (1 - lmbd) / lmbd b = 1 / lmbd a, b = a.to(dec_output.device), b.to(dec_output.device) dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1) # logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask) logits = dec_output * dha_mask + dha_output[:, :, :] * (1 - dha_mask) return logits merged_pred = _merge_res(decoder_pred, dha_pred) return merged_pred else: return decoder_pred def _hotword_representation(self, hotword_pad, hotword_lengths): if self.bias_encoder_type != "lstm": logging.error("Unsupported bias encoder type") """ hw_embed = self.decoder.embed(hotword_pad) hw_embed, (_, _) = self.bias_encoder(hw_embed) if self.lstm_proj is not None: hw_embed = self.lstm_proj(hw_embed) _ind = np.arange(0, hw_embed.shape[0]).tolist() selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]] return selected """ # hw_embed = self.sac_embedding(hotword_pad) hw_embed = self.decoder.embed(hotword_pad) hw_embed = torch.nn.utils.rnn.pack_padded_sequence( hw_embed, hotword_lengths.cpu().type(torch.int64), batch_first=True, enforce_sorted=False, ) packed_rnn_output, _ = self.bias_encoder(hw_embed) rnn_output = torch.nn.utils.rnn.pad_packed_sequence(packed_rnn_output, batch_first=True)[0] if self.lstm_proj is not None: hw_hidden = self.lstm_proj(rnn_output) else: hw_hidden = rnn_output _ind = np.arange(0, hw_hidden.shape[0]).tolist() selected = hw_hidden[_ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()]] return selected def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # hotword self.hotword_list = self.generate_hotwords_list( kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend ) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length = predictor_outs[0], predictor_outs[1] pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return ([],) decoder_out = self._seaco_decode_with_ASF( encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length, hw_list=self.hotword_list, ) # decoder_out, _ = decoder_outs[0], decoder_outs[1] if self.predictor_name == "CifPredictorV3": _, _, us_alphas, us_peaks = self.calc_predictor_timestamp( encoder_out, encoder_out_lens, pre_token_length ) else: us_alphas = None results = [] b, n, d = decoder_out.size() for i in range(b): x = encoder_out[i, : encoder_out_lens[i], :] am_scores = decoder_out[i, : pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0), ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int ) ) if tokenizer is not None: # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) if us_alphas is not None: _, timestamp = ts_prediction_lfr6_standard( us_alphas[i][: encoder_out_lens[i] * 3], us_peaks[i][: encoder_out_lens[i] * 3], copy.copy(token), vad_offset=kwargs.get("begin_time", 0), ) text_postprocessed, time_stamp_postprocessed, _ = ( postprocess_utils.sentence_postprocess(token, timestamp) ) result_i = { "key": key[i], "text": text_postprocessed, "timestamp": time_stamp_postprocessed, } if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed ibest_writer["text"][key[i]] = text_postprocessed else: text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) result_i = {"key": key[i], "text": text_postprocessed} if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["text"][key[i]] = text_postprocessed else: result_i = {"key": key[i], "token_int": token_int} results.append(result_i) return results, meta_data def generate_hotwords_list(self, hotword_list_or_file, tokenizer=None, frontend=None): def load_seg_dict(seg_dict_file): seg_dict = {} assert isinstance(seg_dict_file, str) with open(seg_dict_file, "r", encoding="utf8") as f: lines = f.readlines() for line in lines: s = line.strip().split() key = s[0] value = s[1:] seg_dict[key] = " ".join(value) return seg_dict def seg_tokenize(txt, seg_dict): pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$") out_txt = "" for word in txt: word = word.lower() if word in seg_dict: out_txt += seg_dict[word] + " " else: if pattern.match(word): for char in word: if char in seg_dict: out_txt += seg_dict[char] + " " else: out_txt += "" + " " else: out_txt += "" + " " return out_txt.strip().split() seg_dict = None if frontend.cmvn_file is not None: model_dir = os.path.dirname(frontend.cmvn_file) seg_dict_file = os.path.join(model_dir, "seg_dict") if os.path.exists(seg_dict_file): seg_dict = load_seg_dict(seg_dict_file) else: seg_dict = None # for None if hotword_list_or_file is None: hotword_list = None # for local txt inputs elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith(".txt"): logging.info("Attempting to parse hotwords from local txt...") hotword_list = [] hotword_str_list = [] with codecs.open(hotword_list_or_file, "r") as fin: for line in fin.readlines(): hw = line.strip() hw_list = hw.split() if seg_dict is not None: hw_list = seg_tokenize(hw_list, seg_dict) hotword_str_list.append(hw) hotword_list.append(tokenizer.tokens2ids(hw_list)) hotword_list.append([self.sos]) hotword_str_list.append("") logging.info( "Initialized hotword list from file: {}, hotword list: {}.".format( hotword_list_or_file, hotword_str_list ) ) # for url, download and generate txt elif hotword_list_or_file.startswith("http"): logging.info("Attempting to parse hotwords from url...") work_dir = tempfile.TemporaryDirectory().name if not os.path.exists(work_dir): os.makedirs(work_dir) text_file_path = os.path.join(work_dir, os.path.basename(hotword_list_or_file)) local_file = requests.get(hotword_list_or_file) open(text_file_path, "wb").write(local_file.content) hotword_list_or_file = text_file_path hotword_list = [] hotword_str_list = [] with codecs.open(hotword_list_or_file, "r") as fin: for line in fin.readlines(): hw = line.strip() hw_list = hw.split() if seg_dict is not None: hw_list = seg_tokenize(hw_list, seg_dict) hotword_str_list.append(hw) hotword_list.append(tokenizer.tokens2ids(hw_list)) hotword_list.append([self.sos]) hotword_str_list.append("") logging.info( "Initialized hotword list from file: {}, hotword list: {}.".format( hotword_list_or_file, hotword_str_list ) ) # for text str input elif not hotword_list_or_file.endswith(".txt"): logging.info("Attempting to parse hotwords as str...") hotword_list = [] hotword_str_list = [] for hw in hotword_list_or_file.strip().split(): hotword_str_list.append(hw) hw_list = hw.strip().split() if seg_dict is not None: hw_list = seg_tokenize(hw_list, seg_dict) hotword_list.append(tokenizer.tokens2ids(hw_list)) hotword_list.append([self.sos]) hotword_str_list.append("") logging.info("Hotword list: {}.".format(hotword_str_list)) else: hotword_list = None return hotword_list def export( self, **kwargs, ): if "max_seq_len" not in kwargs: kwargs["max_seq_len"] = 512 from .export_meta import export_rebuild_model models = export_rebuild_model(model=self, **kwargs) return models