#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import torch import logging from typing import Dict, Tuple from contextlib import contextmanager from distutils.version import LooseVersion from funasr.register import tables from funasr.models.ctc.ctc import CTC from funasr.utils import postprocess_utils from funasr.metrics.compute_acc import th_accuracy from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.model import Paraformer from funasr.models.paraformer.search import Hypothesis from funasr.models.paraformer.cif_predictor import mae_loss from funasr.train_utils.device_funcs import force_gatherable from funasr.losses.label_smoothing_loss import LabelSmoothingLoss from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield @tables.register("model_classes", "ParaformerStreaming") class ParaformerStreaming(Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) # import pdb; # pdb.set_trace() self.sampling_ratio = kwargs.get("sampling_ratio", 0.2) self.scama_mask = None if ( hasattr(self.encoder, "overlap_chunk_cls") and self.encoder.overlap_chunk_cls is not None ): from funasr.models.scama.chunk_utilis import ( build_scama_mask_for_cross_attention_decoder, ) self.build_scama_mask_for_cross_attention_decoder_fn = ( build_scama_mask_for_cross_attention_decoder ) self.decoder_attention_chunk_type = kwargs.get("decoder_attention_chunk_type", "chunk") def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() decoding_ind = kwargs.get("decoding_ind") if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder if hasattr(self.encoder, "overlap_chunk_cls"): ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) else: encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight > 0.0: if hasattr(self.encoder, "overlap_chunk_cls"): encoder_out_ctc, encoder_out_lens_ctc = self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) else: encoder_out_ctc, encoder_out_lens_ctc = encoder_out, encoder_out_lens loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_predictor_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = ( self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight ) # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode_chunk( self, speech: torch.Tensor, speech_lengths: torch.Tensor, cache: dict = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( speech, speech_lengths, cache=cache["encoder"] ) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, torch.tensor([encoder_out.size(1)]) def _calc_att_predictor_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_pad_lens, ) predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments( pre_alphas, encoder_out_lens ) scama_mask = None if ( self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == "chunk" ): encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_pad_lens, is_training=self.training, ) elif self.encoder.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) # 0. sampler decoder_out_1st = None pre_loss_att = None if self.sampling_ratio > 0.0: if self.use_1st_decoder_loss: sematic_embeds, decoder_out_1st, pre_loss_att = self.sampler_with_grad( encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, scama_mask, ) else: sematic_embeds, decoder_out_1st = self.sampler( encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, scama_mask, ) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, scama_mask ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att def sampler( self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, chunk_mask=None, ): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to( ys_pad.device ) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, chunk_mask ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = ( ((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio ).long() if target_num > 0: input_mask[li].scatter_( dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0 ) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill( ~input_mask_expand_dim, 0 ) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index = self.predictor( encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=None, ) predictor_alignments, predictor_alignments_len = self.predictor.gen_frame_alignments( pre_alphas, encoder_out_lens + 1 if self.predictor.tail_threshold > 0.0 else encoder_out_lens, ) scama_mask = None if ( self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == "chunk" ): encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=None, is_training=self.training, ) self.scama_mask = scama_mask return pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs): is_final = kwargs.get("is_final", False) return self.predictor.forward_chunk(encoder_out, cache["encoder"], is_final=is_final) def cal_decoder_with_predictor( self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ): decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, self.scama_mask ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def cal_decoder_with_predictor_chunk( self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, cache=None ): decoder_outs = self.decoder.forward_chunk(encoder_out, sematic_embeds, cache["decoder"]) decoder_out = decoder_outs decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def init_cache_seesion(self, session_id: str, cache: dict = {}, **kwargs): chunk_size = kwargs.get("chunk_size", [0, 10, 5]) encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) batch_size = 1 enc_output_size = kwargs["encoder_conf"]["output_size"] feats_dims = kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] cache_encoder = { "start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)), "cif_alphas": torch.zeros((batch_size, 1)), "chunk_size": chunk_size, "encoder_chunk_look_back": encoder_chunk_look_back, "last_chunk": False, "opt": None, "feats": torch.zeros((batch_size, chunk_size[0] + chunk_size[2], feats_dims)), "tail_chunk": False, } cache[session_id]["encoder"] = cache_encoder cache_decoder = { "decode_fsmn": None, "decoder_chunk_look_back": decoder_chunk_look_back, "opt": None, "chunk_size": chunk_size, } cache[session_id]["decoder"] = cache_decoder cache[session_id]["frontend"] = {} cache[session_id]["prev_samples"] = torch.empty(0) return cache def init_cache(self, cache: dict = {}, **kwargs): chunk_size = kwargs.get("chunk_size", [0, 10, 5]) encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) batch_size = 1 enc_output_size = kwargs["encoder_conf"]["output_size"] feats_dims = kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] cache_encoder = { "start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)), "cif_alphas": torch.zeros((batch_size, 1)), "chunk_size": chunk_size, "encoder_chunk_look_back": encoder_chunk_look_back, "last_chunk": False, "opt": None, "feats": torch.zeros((batch_size, chunk_size[0] + chunk_size[2], feats_dims)), "tail_chunk": False, } cache["encoder"] = cache_encoder cache_decoder = { "decode_fsmn": None, "decoder_chunk_look_back": decoder_chunk_look_back, "opt": None, "chunk_size": chunk_size, } cache["decoder"] = cache_decoder cache["frontend"] = {} cache["prev_samples"] = torch.empty(0) return cache def generate_chunk( self, speech, speech_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): cache = kwargs.get("cache", {}) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode_chunk( speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False) ) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor_chunk( encoder_out, encoder_out_lens, cache=cache, is_final=kwargs.get("is_final", False) ) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( predictor_outs[0], predictor_outs[1], predictor_outs[2], predictor_outs[3], ) pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor_chunk( encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length, cache=cache ) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] results = [] b, n, d = decoder_out.size() if isinstance(key[0], (list, tuple)): key = key[0] for i in range(b): x = encoder_out[i, : encoder_out_lens[i], :] am_scores = decoder_out[i, : pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0), ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int ) ) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) # text = tokenizer.tokens2text(token) result_i = token results.extend(result_i) return results def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, cache: dict = {}, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) session_id = kwargs.pop("session_id", None) if session_id: if len(cache[session_id]) == 0: self.init_cache_seesion(session_id, cache, **kwargs) else: cache = {} if len(cache) == 0: self.init_cache(cache, **kwargs) meta_data = {} chunk_size = kwargs.get("chunk_size", [0, 10, 5]) chunk_stride_samples = int(chunk_size[1] * 960) # 600ms time1 = time.perf_counter() cfg = {"is_final": kwargs.get("is_final", False)} audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, cache=cfg, ) _is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" assert len(audio_sample_list) == 1, "batch_size must be set 1" if session_id: audio_sample = torch.cat((cache[session_id]["prev_samples"], audio_sample_list[0])) else: audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) tokens = [] for i in range(n): kwargs["is_final"] = _is_final and i == n - 1 audio_sample_i = audio_sample[i * chunk_stride_samples : (i + 1) * chunk_stride_samples] if kwargs["is_final"] and len(audio_sample_i) < 960: if session_id: cache[session_id]["encoder"]["tail_chunk"] = True speech = cache[session_id]["encoder"]["feats"] else: cache["encoder"]["tail_chunk"] = True speech = cache["encoder"]["feats"] speech_lengths = torch.tensor([speech.shape[1]], dtype=torch.int64).to( speech.device ) else: # extract fbank feats if session_id: frontend_cache = cache[session_id]["frontend"] else: frontend_cache = cache["frontend"] speech, speech_lengths = extract_fbank( [audio_sample_i], data_type=kwargs.get("data_type", "sound"), frontend=frontend, cache=frontend_cache, is_final=kwargs["is_final"], ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) if session_id: chunck_cache = cache[session_id] else: chunck_cache = cache tokens_i = self.generate_chunk( speech, speech_lengths, key=key, tokenizer=tokenizer, cache=chunck_cache, frontend=frontend, **kwargs, ) tokens.extend(tokens_i) text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens) result_i = {"key": key[0], "text": text_postprocessed} result = [result_i] if session_id: cache[session_id]["prev_samples"] = audio_sample[:-m] if _is_final: self.init_cache_seesion(session_id, cache, **kwargs) else: cache["prev_samples"] = audio_sample[:-m] if _is_final: self.init_cache(cache, **kwargs) if kwargs.get("output_dir"): if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{1}best_recog"] ibest_writer["token"][key[0]] = " ".join(tokens) ibest_writer["text"][key[0]] = text_postprocessed return result, meta_data def export(self, **kwargs): from .export_meta import export_rebuild_model models = export_rebuild_model(model=self, **kwargs) return models