import torch import torch.nn as nn from funasr.register import tables @tables.register("adaptor_classes", "Linear") class Linear(nn.Module): def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs): super().__init__() self.k = downsample_rate self.encoder_dim = encoder_dim self.llm_dim = llm_dim self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim) self.relu = nn.ReLU() self.linear2 = nn.Linear(ffn_dim, self.llm_dim) def forward(self, x): batch_size, seq_len, dim = x.size() num_frames_to_discard = seq_len % self.k if num_frames_to_discard > 0: x = x[:, :-num_frames_to_discard, :] seq_len = x.size(1) x = x.contiguous() x = x.view(batch_size, seq_len // self.k, dim * self.k) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) return x @tables.register("adaptor_classes", "QFormer") class EncoderProjectorQFormer(nn.Module): def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs): super().__init__() self.encoder_dim = encoder_dim self.llm_dim = llm_dim from transformers import Blip2QFormerConfig, Blip2QFormerModel configuration = Blip2QFormerConfig() configuration.encoder_hidden_size = self.encoder_dim configuration.num_hidden_layers = 2 self.query_len = 64 self.query = nn.Parameter(torch.zeros(1, self.query_len, configuration.hidden_size)) self.query.data.normal_(mean=0.0, std=1.0) self.qformer = Blip2QFormerModel(configuration) self.linear = nn.Linear(configuration.hidden_size, self.llm_dim) self.norm = nn.LayerNorm(self.llm_dim, eps=1e-5) def forward(self, x, atts): query = self.query.expand(x.shape[0], -1, -1) query_output = self.qformer( query_embeds=query, encoder_hidden_states=x, encoder_attention_mask=atts, return_dict=True, ) query_proj = self.norm(self.linear(query_output.last_hidden_state)) return query_proj