#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import copy import time import torch import logging from contextlib import contextmanager from distutils.version import LooseVersion from typing import Dict, List, Optional, Tuple from funasr.register import tables from funasr.models.ctc.ctc import CTC from funasr.utils import postprocess_utils from funasr.metrics.compute_acc import th_accuracy from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.model import Paraformer from funasr.models.paraformer.search import Hypothesis from funasr.train_utils.device_funcs import force_gatherable from funasr.models.transformer.utils.add_sos_eos import add_sos_eos from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr.train_utils.device_funcs import to_device if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield @tables.register("model_classes", "BiCifParaformer") class BiCifParaformer(Paraformer): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit https://arxiv.org/abs/2305.11013 Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model https://arxiv.org/abs/2301.12343 """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) def _calc_pre2_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias _, _, _, _, pre_token_length2 = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id ) # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2) return loss_pre2 def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id ) # 0. sampler decoder_out_1st = None if self.sampling_ratio > 0.0: sematic_embeds, decoder_out_1st = self.sampler( encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds ) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = ( self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id) ) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp( encoder_out, encoder_out_mask, token_num ) return ds_alphas, ds_cif_peak, us_alphas, us_peaks def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) loss_pre2 = self._calc_pre2_loss(encoder_out, encoder_out_lens, text, text_lengths) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = ( loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5 ) else: loss = ( self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5 ) # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss_pre2"] = loss_pre2.detach().cpu() stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((text_lengths + self.predictor_bias).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): # init beamsearch is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} # if isinstance(data_in, torch.Tensor): # fbank # speech, speech_lengths = data_in, data_lengths # if len(speech.shape) < 3: # speech = speech[None, :, :] # if speech_lengths is None: # speech_lengths = speech.shape[1] # else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( predictor_outs[0], predictor_outs[1], predictor_outs[2], predictor_outs[3], ) pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor( encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length ) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] # BiCifParaformer, test no bias cif2 _, _, us_alphas, us_peaks = self.calc_predictor_timestamp( encoder_out, encoder_out_lens, pre_token_length ) results = [] b, n, d = decoder_out.size() for i in range(b): x = encoder_out[i, : encoder_out_lens[i], :] am_scores = decoder_out[i, : pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0), ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{nbest_idx+1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int ) ) if tokenizer is not None: # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) _, timestamp = ts_prediction_lfr6_standard( us_alphas[i][: encoder_out_lens[i] * 3], us_peaks[i][: encoder_out_lens[i] * 3], copy.copy(token), vad_offset=kwargs.get("begin_time", 0), ) text_postprocessed, time_stamp_postprocessed, word_lists = ( postprocess_utils.sentence_postprocess(token, timestamp) ) result_i = { "key": key[i], "text": text_postprocessed, "timestamp": time_stamp_postprocessed, } if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) # ibest_writer["text"][key[i]] = text ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed ibest_writer["text"][key[i]] = text_postprocessed else: result_i = {"key": key[i], "token_int": token_int} results.append(result_i) return results, meta_data def export(self, **kwargs): from .export_meta import export_rebuild_model if "max_seq_len" not in kwargs: kwargs["max_seq_len"] = 512 models = export_rebuild_model(model=self, **kwargs) return models