#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import torch import types from funasr.register import tables def export_rebuild_model(model, **kwargs): is_onnx = kwargs.get("type", "onnx") == "onnx" encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export") model.encoder = encoder_class(model.encoder, onnx=is_onnx) predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export") model.predictor = predictor_class(model.predictor, onnx=is_onnx) decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export") model.decoder = decoder_class(model.decoder, onnx=is_onnx) from funasr.utils.torch_function import sequence_mask model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False) model.forward = types.MethodType(export_forward, model) model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) model.export_input_names = types.MethodType(export_input_names, model) model.export_output_names = types.MethodType(export_output_names, model) model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) model.export_name = types.MethodType(export_name, model) return model def export_forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, ): # a. To device batch = {"speech": speech, "speech_lengths": speech_lengths} enc, enc_len = self.encoder(**batch) mask = self.make_pad_mask(enc_len)[:, None, :] pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask) pre_token_length = pre_token_length.round().type(torch.int32) decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length) decoder_out = torch.log_softmax(decoder_out, dim=-1) # get predicted timestamps us_alphas, us_cif_peak = self.predictor.get_upsample_timestmap(enc, mask, pre_token_length) return decoder_out, pre_token_length, us_alphas, us_cif_peak def export_dummy_inputs(self): speech = torch.randn(2, 30, 560) speech_lengths = torch.tensor([6, 30], dtype=torch.int32) return (speech, speech_lengths) def export_input_names(self): return ["speech", "speech_lengths"] def export_output_names(self): return ["logits", "token_num", "us_alphas", "us_cif_peak"] def export_dynamic_axes(self): return { "speech": {0: "batch_size", 1: "feats_length"}, "speech_lengths": { 0: "batch_size", }, "logits": {0: "batch_size", 1: "logits_length"}, "us_alphas": {0: "batch_size", 1: "alphas_length"}, "us_cif_peak": {0: "batch_size", 1: "alphas_length"}, } def export_name(self): return "model.onnx"