import numpy as np import torch from torch.nn.utils.rnn import pad_sequence def padding(data, float_pad_value=0.0, int_pad_value=-1): assert isinstance(data, list) assert "key" in data[0] assert "speech" in data[0] or "text" in data[0] keys = [x["key"] for x in data] batch = {} data_names = data[0].keys() for data_name in data_names: if data_name == "key" or data_name == "sampling_rate": continue else: if data_name != "hotword_indxs": if data[0][data_name].dtype.kind == "i": pad_value = int_pad_value tensor_type = torch.int64 else: pad_value = float_pad_value tensor_type = torch.float32 tensor_list = [torch.tensor(np.copy(d[data_name]), dtype=tensor_type) for d in data] tensor_lengths = torch.tensor([len(d[data_name]) for d in data], dtype=torch.int32) tensor_pad = pad_sequence(tensor_list, batch_first=True, padding_value=pad_value) batch[data_name] = tensor_pad batch[data_name + "_lengths"] = tensor_lengths # SAC LABEL INCLUDE if "hotword_indxs" in batch: # if hotword indxs in batch # use it to slice hotwords out hotword_list = [] hotword_lengths = [] text = batch["text"] text_lengths = batch["text_lengths"] hotword_indxs = batch["hotword_indxs"] dha_pad = torch.ones_like(text) * -1 _, t1 = text.shape t1 += 1 # TODO: as parameter which is same as predictor_bias nth_hw = 0 for b, (hotword_indx, one_text, length) in enumerate( zip(hotword_indxs, text, text_lengths) ): dha_pad[b][:length] = 8405 if hotword_indx[0] != -1: start, end = int(hotword_indx[0]), int(hotword_indx[1]) hotword = one_text[start : end + 1] hotword_list.append(hotword) hotword_lengths.append(end - start + 1) dha_pad[b][start : end + 1] = one_text[start : end + 1] nth_hw += 1 if len(hotword_indx) == 4 and hotword_indx[2] != -1: # the second hotword if exist start, end = int(hotword_indx[2]), int(hotword_indx[3]) hotword_list.append(one_text[start : end + 1]) hotword_lengths.append(end - start + 1) dha_pad[b][start : end + 1] = one_text[start : end + 1] nth_hw += 1 hotword_list.append(torch.tensor([1])) hotword_lengths.append(1) hotword_pad = pad_sequence(hotword_list, batch_first=True, padding_value=0) batch["hotword_pad"] = hotword_pad batch["hotword_lengths"] = torch.tensor(hotword_lengths, dtype=torch.int32) batch["dha_pad"] = dha_pad del batch["hotword_indxs"] del batch["hotword_indxs_lengths"] return keys, batch