import logging from pathlib import Path from typing import Iterable from typing import List from typing import Union import sentencepiece as spm from torch.utils.data import DataLoader from funasr.datasets.large_datasets.dataset import Dataset from funasr.datasets.large_datasets.abs_iter_factory import AbsIterFactory from funasr.tokenizer.abs_tokenizer import AbsTokenizer from funasr.register import tables def read_symbol_table(symbol_table_file): if isinstance(symbol_table_file, str): symbol_table = {} with open(symbol_table_file, "r", encoding="utf8") as fin: for i, line in enumerate(fin): char = line.strip() symbol_table[char] = i else: assert isinstance(symbol_table_file, list) symbol_table = {} for i, char in enumerate(symbol_table_file): symbol_table[char] = i return symbol_table def load_seg_dict(seg_dict_file): seg_dict = {} assert isinstance(seg_dict_file, str) with open(seg_dict_file, "r", encoding="utf8") as f: lines = f.readlines() for line in lines: s = line.strip().split() key = s[0] value = s[1:] seg_dict[key] = " ".join(value) return seg_dict class SentencepiecesTokenizer(AbsTokenizer): def __init__(self, model: Union[Path, str]): self.model = str(model) self.sp = None def __repr__(self): return f'{self.__class__.__name__}(model="{self.model}")' def _build_sentence_piece_processor(self): if self.sp is None: self.sp = spm.SentencePieceProcessor() self.sp.load(self.model) def text2tokens(self, line: str) -> List[str]: self._build_sentence_piece_processor() return self.sp.EncodeAsPieces(line) def tokens2text(self, tokens: Iterable[str]) -> str: self._build_sentence_piece_processor() return self.sp.DecodePieces(list(tokens)) @tables.register("dataset_classes", "LargeDataset") class LargeDataLoader(AbsIterFactory): def __init__(self, args, mode="train"): symbol_table, seg_dict, punc_dict, bpe_tokenizer = None, None, None, None if hasattr(args, "token_list") and args.token_list is not None: symbol_table = read_symbol_table(args.token_list) if hasattr(args, "seg_dict_file") and args.seg_dict_file is not None: seg_dict = load_seg_dict(args.seg_dict_file) if hasattr(args, "punc_list") and args.punc_list is not None: punc_dict = read_symbol_table(args.punc_list) if hasattr(args, "bpemodel") and args.bpemodel is not None: bpe_tokenizer = SentencepiecesTokenizer(args.bpemodel) self.dataset_conf = args.dataset_conf if "frontend_conf" not in args: self.frontend_conf = None else: self.frontend_conf = args.frontend_conf self.speed_perturb = args.speed_perturb if hasattr(args, "speed_perturb") else None logging.info("dataloader config: {}".format(self.dataset_conf)) batch_mode = self.dataset_conf.get("batch_mode", "padding") data_list = args.train_data_file if mode == "train" else args.valid_data_file self.dataset = Dataset( data_list, symbol_table, seg_dict, punc_dict, bpe_tokenizer, self.dataset_conf, self.frontend_conf, speed_perturb=self.speed_perturb if mode == "train" else None, mode=mode, batch_mode=batch_mode, ) def build_iter(self, epoch, shuffle=True): self.dataset.set_epoch(epoch) data_loader = DataLoader( self.dataset, batch_size=None, pin_memory=True, num_workers=self.dataset_conf.get("num_workers", 8), ) return data_loader