import torch import numpy as np import logging import math import random import torch.distributed as dist from torch.utils.data import DistributedSampler from torch.utils.data import BatchSampler, Sampler import torch.distributed as dist from funasr.register import tables @tables.register("batch_sampler_classes", "BatchSampler") @tables.register("batch_sampler_classes", "CustomDistributedBatchSampler") @tables.register("batch_sampler_classes", "CustomDistributedDynamicBatchSampler") @tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler") @tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler") @tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler") def CustomDistributedBatchSampler_fn(dataset, **kwargs): dataloader_args = {} batch_type = kwargs.get("batch_type", "example") if batch_type == "example": batch_sampler = CustomDistributedBatchSampler(dataset, **kwargs) else: if kwargs.get("sort_size", -1) > 0: batch_sampler = CustomDistributedBufferDynamicBatchSampler(dataset, **kwargs) else: batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs) # batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs) dataloader_args["batch_sampler"] = batch_sampler dataloader_args["num_workers"] = kwargs.get("num_workers", 4) dataloader_args["pin_memory"] = kwargs.get("pin_memory", True) return dataloader_args class CustomDistributedBatchSampler(Sampler): def __init__( self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False, is_training: bool = True, **kwargs, ): try: rank = dist.get_rank() num_replicas = dist.get_world_size() except: rank = 0 num_replicas = 1 self.rank = rank self.num_replicas = num_replicas self.dataset = dataset self.batch_size = batch_size self.is_training = is_training self.shuffle = shuffle and is_training self.drop_last = drop_last # self.total_size = len(dataset) if self.drop_last: self.total_size = (len(self.dataset) // (batch_size * num_replicas)) * ( batch_size * num_replicas ) else: self.total_size = math.ceil(len(self.dataset) / (batch_size * num_replicas)) * ( batch_size * num_replicas ) self.num_samples = int(self.total_size // self.num_replicas) self.epoch = 0 self.max_token_length = kwargs.get("max_token_length", None) self.length_scale_source = kwargs.get("length_scale_source", 1.0) def __iter__(self): # Generate a list of indices if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # Add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += ( indices * (padding_size // len(indices)) + indices[: padding_size % len(indices)] ) assert len(indices) == self.total_size # Subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples # Filter out indices with length greater than the max length, if provided if self.max_token_length is not None: filtered_indices = [] for idx in indices: source_len = self.dataset.get_source_len(idx) / self.length_scale_source if source_len <= self.max_token_length: filtered_indices.append(idx) indices = filtered_indices # Now that we have only the indices for this replica, chunk them into batches batches = [ indices[i : i + self.batch_size] for i in range(0, len(indices), self.batch_size) ] # Drop the last batch if it's not full and drop_last is True if self.drop_last and len(batches[-1]) != self.batch_size: batches = batches[:-1] return iter(batches) def __len__(self): return self.num_samples // self.batch_size def set_epoch(self, epoch): self.epoch = epoch class CustomDistributedBufferBatchSampler(Sampler): def __init__( self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False, is_training: bool = True, sort_size: int = 1024, **kwargs, ): try: rank = dist.get_rank() num_replicas = dist.get_world_size() except: rank = 0 num_replicas = 1 self.rank = rank self.num_replicas = num_replicas self.dataset = dataset self.batch_size = batch_size self.is_training = is_training self.shuffle = shuffle and is_training self.drop_last = drop_last # self.total_size = len(dataset) if self.drop_last: self.total_size = (len(self.dataset) // (batch_size * num_replicas)) * ( batch_size * num_replicas ) else: self.total_size = math.ceil(len(self.dataset) / (batch_size * num_replicas)) * ( batch_size * num_replicas ) self.num_samples = int(self.total_size // self.num_replicas) self.epoch = 0 self.max_token_length = kwargs.get("max_token_length", None) self.length_scale_source = kwargs.get("length_scale_source", 1.0) self.sort_size = sort_size def __iter__(self): # Generate a list of indices if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # Add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += ( indices * (padding_size // len(indices)) + indices[: padding_size % len(indices)] ) assert len(indices) == self.total_size # Subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples # Filter out indices with length greater than the max length, if provided if self.max_token_length is not None: filtered_indices = [] for idx in indices: source_len = self.dataset.get_source_len(idx) / self.length_scale_source if source_len <= self.max_token_length: filtered_indices.append(idx) indices = filtered_indices # Buffer sorting logic sorted_batches = [] buffer = [] for idx in indices: buffer.append(idx) if len(buffer) >= self.sort_size: # Sort the buffer based on some criteria, e.g., dataset sample length buffer.sort(key=lambda x: self.dataset.get_source_len(x)) sorted_batches.extend(self._create_batches_from_buffer(buffer)) buffer = [] # Handle the remaining items in the buffer if buffer: buffer.sort(key=lambda x: self.dataset.get_source_len(x)) sorted_batches.extend(self._create_batches_from_buffer(buffer)) return iter(sorted_batches) def _create_batches_from_buffer(self, buffer): # Function to convert the sorted buffer into batches batched_buffer = [ buffer[i : i + self.batch_size] for i in range(0, len(buffer), self.batch_size) ] if self.drop_last and len(batched_buffer[-1]) != self.batch_size: batched_buffer = batched_buffer[:-1] return batched_buffer def __len__(self): return self.num_samples // self.batch_size def set_epoch(self, epoch): self.epoch = epoch class CustomDistributedDynamicBatchSampler(DistributedSampler): def __init__( self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False, is_training: bool = True, **kwargs, ): try: rank = dist.get_rank() num_replicas = dist.get_world_size() except: rank = 0 num_replicas = 1 self.rank = rank self.num_replicas = num_replicas self.dataset = dataset self.batch_size = batch_size self.is_training = is_training self.shuffle = shuffle and is_training self.drop_last = drop_last self.total_size = len(self.dataset) # self.num_samples = int(math.ceil(self.total_size / self.num_replicas)) self.epoch = 0 self.max_token_length = kwargs.get("max_token_length", 2048) self.length_scale_source = kwargs.get("length_scale_source", 1.0) def __iter__(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) indices = indices[self.rank : self.total_size : self.num_replicas] batches = [] batch = [] max_len_in_batch = 0 current_batch_length = 0 for idx in indices: sample_length = self.dataset.get_source_len(idx) if sample_length > self.max_token_length: continue potential_batch_length = ( max_len_in_batch if sample_length < max_len_in_batch else sample_length ) * (len(batch) + 1) if potential_batch_length <= self.batch_size: batch.append(idx) if sample_length > max_len_in_batch: max_len_in_batch = sample_length # current_batch_length = max_len_in_batch * len(batch) else: batches.append(batch) batch = [idx] max_len_in_batch = sample_length # current_batch_length = max_len_in_batch # Add the last batch if it's not empty and we're not dropping it if batch and (not self.drop_last or len(batch) * max_len_in_batch == self.batch_size): batches.append(batch) return iter(batches) def __len__(self): return 1 def set_epoch(self, epoch): self.epoch = epoch class CustomDistributedBufferDynamicBatchSampler(DistributedSampler): def __init__( self, dataset, batch_size, batch_type="token", num_replicas=None, rank=None, rank_split=False, shuffle=True, drop_last=False, is_training: bool = True, sort_size: int = 1024, **kwargs, ): try: rank = dist.get_rank() num_replicas = dist.get_world_size() except: rank = 0 num_replicas = 1 # if rank_split: # logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank") # rank = 0 # num_replicas = 1 self.rank = rank self.num_replicas = num_replicas self.dataset = dataset self.batch_size = batch_size self.batch_type = batch_type self.is_training = is_training self.shuffle = shuffle and is_training self.drop_last = drop_last self.total_size = len(self.dataset) self.num_samples = int(math.ceil(self.total_size / self.num_replicas)) self.epoch = 0 self.sort_size = sort_size * num_replicas self.max_token_length = kwargs.get("max_token_length", 2048) self.length_scale_source = kwargs.get("length_scale_source", 1.0) super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle, drop_last=drop_last ) def __iter__(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) random.seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # Create sorted buffers and form batches buffer_batches = [] for i in range(0, len(indices), self.sort_size): buffer = sorted( indices[i : i + self.sort_size], key=lambda idx: self.dataset.get_source_len(idx) ) batch = [] max_len_in_batch = 0 for idx in buffer: original_sample_length = self.dataset.get_source_len(idx) if original_sample_length > self.max_token_length: continue sample_length = 1 if self.batch_type == "example" else original_sample_length potential_batch_length = max(max_len_in_batch, sample_length) * (len(batch) + 1) if potential_batch_length <= self.batch_size: batch.append(idx) max_len_in_batch = max(max_len_in_batch, sample_length) else: buffer_batches.append(batch) batch = [idx] max_len_in_batch = sample_length if batch: buffer_batches.append(batch) # Ensure each rank gets the same number of batches, duplicate data if needed batches_per_rank = math.ceil(len(buffer_batches) / self.num_replicas) total_batches_needed = batches_per_rank * self.num_replicas extra_batches = total_batches_needed - len(buffer_batches) buffer_batches += random.choices(buffer_batches, k=extra_batches) # Evenly distribute batches from buffer_batches to each rank rank_batches = [[] for _ in range(self.num_replicas)] for i, batch in enumerate(buffer_batches): rank_batches[i % self.num_replicas].append(batch) # Assign all batches for the current rank directly final_batches = rank_batches[self.rank] return iter(final_batches) def __len__(self): return 1 def set_epoch(self, epoch): self.epoch = epoch class DistributedSamplerWarp(BatchSampler): def __init__( self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False ): if num_replicas is None: if not torch.distributed.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = torch.distributed.get_world_size() if rank is None: if not torch.distributed.is_available(): raise RuntimeError("Requires distributed package to be available") rank = torch.distributed.get_rank() self.dataset = dataset self.batch_size = batch_size self.num_replicas = num_replicas self.rank = rank self.shuffle = shuffle self.drop_last = drop_last # Create an instance of the DistributedSampler self.sampler = DistributedSampler( self.dataset, num_replicas=self.num_replicas, rank=self.rank, shuffle=self.shuffle ) # Call BatchSampler's constructor super().__init__(self.sampler, batch_size, drop_last) def __iter__(self): # If we shuffle, we need to call the set_epoch method if self.shuffle: self.sampler.set_epoch(self.epoch) # Generate batch indices using the parent class return super().__iter__() def set_epoch(self, epoch): self.epoch = epoch