import torch import random from funasr.register import tables from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video @tables.register("dataset_classes", "AudioDataset") class AudioDataset(torch.utils.data.Dataset): """ AudioDataset """ def __init__( self, path, index_ds: str = None, frontend=None, tokenizer=None, int_pad_value: int = -1, float_pad_value: float = 0.0, **kwargs, ): super().__init__() index_ds_class = tables.index_ds_classes.get(index_ds) self.index_ds = index_ds_class(path, **kwargs) preprocessor_speech = kwargs.get("preprocessor_speech", None) if preprocessor_speech: preprocessor_speech_class = tables.preprocessor_classes.get(preprocessor_speech) preprocessor_speech = preprocessor_speech_class( **kwargs.get("preprocessor_speech_conf") ) self.preprocessor_speech = preprocessor_speech preprocessor_text = kwargs.get("preprocessor_text", None) if preprocessor_text: preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text) preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf")) self.preprocessor_text = preprocessor_text self.frontend = frontend self.fs = 16000 if frontend is None else frontend.fs self.data_type = "sound" self.tokenizer = tokenizer self.int_pad_value = int_pad_value self.float_pad_value = float_pad_value def get_source_len(self, index): item = self.index_ds[index] return self.index_ds.get_source_len(item) def get_target_len(self, index): item = self.index_ds[index] return self.index_ds.get_target_len(item) def __len__(self): return len(self.index_ds) def __getitem__(self, index): item = self.index_ds[index] # import pdb; # pdb.set_trace() source = item["source"] data_src = load_audio_text_image_video(source, fs=self.fs) if self.preprocessor_speech: data_src = self.preprocessor_speech(data_src, fs=self.fs) speech, speech_lengths = extract_fbank( data_src, data_type=self.data_type, frontend=self.frontend, is_final=True ) # speech: [b, T, d] target = item["target"] if self.preprocessor_text: target = self.preprocessor_text(target) if self.tokenizer: ids = self.tokenizer.encode(target) text = torch.tensor(ids, dtype=torch.int64) else: ids = target text = ids ids_lengths = len(ids) text_lengths = torch.tensor([ids_lengths], dtype=torch.int32) return { "speech": speech[0, :, :], "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, } def collator(self, samples: list = None): outputs = {} for sample in samples: for key in sample.keys(): if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if isinstance(data_list[0], torch.Tensor): if data_list[0].dtype == torch.int64 or data_list[0].dtype == torch.int32: pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence( data_list, batch_first=True, padding_value=pad_value ) return outputs @tables.register("dataset_classes", "AudioDatasetHotword") class AudioDatasetHotword(AudioDataset): # for finetuning contextual_paraformer and seaco_paraformer def __init__( self, *args, seaco_id: bool = 0, **kwargs, ): super().__init__(*args, **kwargs) self.seaco_id = seaco_id def __getitem__(self, index): item = self.index_ds[index] # import pdb; # pdb.set_trace() source = item["source"] data_src = load_audio_text_image_video(source, fs=self.fs) if self.preprocessor_speech: data_src = self.preprocessor_speech(data_src, fs=self.fs) speech, speech_lengths = extract_fbank( data_src, data_type=self.data_type, frontend=self.frontend, is_final=True ) # speech: [b, T, d] target = item["target"] if self.preprocessor_text: target = self.preprocessor_text(target) if self.tokenizer: ids = self.tokenizer.encode(target) text = torch.tensor(ids, dtype=torch.int64) else: ids = target text = ids ids_lengths = len(ids) text_lengths = torch.tensor([ids_lengths], dtype=torch.int32) def generate_index( length, hotword_min_length=2, hotword_max_length=8, sample_rate=0.75, double_rate=0.1, pre_prob=0.0, pre_index=None, pre_hwlist=None, ): if length < hotword_min_length: return [-1] if random.random() < sample_rate: if pre_prob > 0 and random.random() < pre_prob and pre_index is not None: return pre_index if length == hotword_min_length: return [0, length - 1] elif ( random.random() < double_rate and length > hotword_max_length + hotword_min_length + 2 ): # sample two hotwords in a sentence _max_hw_length = min(hotword_max_length, length // 2) # first hotword start1 = random.randint(0, length // 3) end1 = random.randint( start1 + hotword_min_length - 1, start1 + _max_hw_length - 1 ) # second hotword start2 = random.randint(end1 + 1, length - hotword_min_length) end2 = random.randint( min(length - 1, start2 + hotword_min_length - 1), min(length - 1, start2 + hotword_max_length - 1), ) return [start1, end1, start2, end2] else: # single hotword start = random.randint(0, length - hotword_min_length) end = random.randint( min(length - 1, start + hotword_min_length - 1), min(length - 1, start + hotword_max_length - 1), ) return [start, end] else: return [-1] hotword_indx = generate_index(text_lengths[0]) return { "speech": speech[0, :, :], "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, "hotword_indx": hotword_indx, "seaco_id": self.seaco_id, } def collator(self, samples: list = None): outputs = {} hotword_indxs = [] seaco_id = samples[0]["seaco_id"] for sample in samples: for key in sample.keys(): if key == "seaco_id": continue elif key == "hotword_indx": hotword_indxs.append(sample[key]) else: if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if isinstance(data_list[0], torch.Tensor): if data_list[0].dtype == torch.int64 or data_list[0].dtype == torch.int32: pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence( data_list, batch_first=True, padding_value=pad_value ) hotword_list, hotword_lengths = [], [] text = outputs["text"] seaco_label_pad = torch.ones_like(text) * -1 if seaco_id else None for b, (hotword_indx, one_text, length) in enumerate( zip(hotword_indxs, text, outputs["text_lengths"]) ): length = length[0] if seaco_label_pad is not None: seaco_label_pad[b][:length] = seaco_id if hotword_indx[0] != -1: start, end = int(hotword_indx[0]), int(hotword_indx[1]) hotword = one_text[start : end + 1] hotword_list.append(hotword) hotword_lengths.append(end - start + 1) if seaco_label_pad is not None: seaco_label_pad[b][start : end + 1] = one_text[start : end + 1] if len(hotword_indx) == 4 and hotword_indx[2] != -1: # the second hotword if exist start, end = int(hotword_indx[2]), int(hotword_indx[3]) hotword_list.append(one_text[start : end + 1]) hotword_lengths.append(end - start + 1) if seaco_label_pad is not None: seaco_label_pad[b][start : end + 1] = one_text[start : end + 1] hotword_list.append(torch.tensor([1])) hotword_lengths.append(1) hotword_pad = torch.nn.utils.rnn.pad_sequence( hotword_list, batch_first=True, padding_value=0 ) outputs["hotword_pad"] = hotword_pad outputs["hotword_lengths"] = torch.tensor(hotword_lengths, dtype=torch.int32) if seaco_label_pad is not None: outputs["seaco_label_pad"] = seaco_label_pad return outputs