import pynini from fun_text_processing.text_normalization.en.graph_utils import DAMO_NOT_QUOTE, GraphFst from fun_text_processing.text_normalization.en.verbalizers.ordinal import OrdinalFst from pynini.lib import pynutil class RomanFst(GraphFst): """ Finite state transducer for verbalizing roman numerals e.g. tokens { roman { integer: "one" } } -> one Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="roman", kind="verbalize", deterministic=deterministic) suffix = OrdinalFst().suffix cardinal = pynini.closure(DAMO_NOT_QUOTE) ordinal = pynini.compose(cardinal, suffix) graph = ( pynutil.delete('key_cardinal: "') + pynini.closure(DAMO_NOT_QUOTE, 1) + pynutil.delete('"') + pynini.accep(" ") + pynutil.delete('integer: "') + cardinal + pynutil.delete('"') ).optimize() graph |= ( pynutil.delete('default_cardinal: "default" integer: "') + cardinal + pynutil.delete('"') ).optimize() graph |= ( pynutil.delete('default_ordinal: "default" integer: "') + ordinal + pynutil.delete('"') ).optimize() graph |= ( pynutil.delete('key_the_ordinal: "') + pynini.closure(DAMO_NOT_QUOTE, 1) + pynutil.delete('"') + pynini.accep(" ") + pynutil.delete('integer: "') + pynini.closure(pynutil.insert("the "), 0, 1) + ordinal + pynutil.delete('"') ).optimize() delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()