# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) # which gpu to train or finetune export CUDA_VISIBLE_DEVICES="0,1" gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # model_name from model_hub, or model_dir in local path ## option 1, download model automatically model_name_or_model_dir="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" ## option 2, download model by git #local_path_root=${workspace}/modelscope_models #mkdir -p ${local_path_root}/${model_name_or_model_dir} #git clone https://www.modelscope.cn/${model_name_or_model_dir}.git ${local_path_root}/${model_name_or_model_dir} #model_name_or_model_dir=${local_path_root}/${model_name_or_model_dir} # data dir, which contains: train.json, val.json data_dir="../../../data/list" train_data="${data_dir}/train.jsonl" val_data="${data_dir}/val.jsonl" # generate train.jsonl and val.jsonl from wav.scp and text.txt scp2jsonl \ ++scp_file_list='["../../../data/list/train_wav.scp", "../../../data/list/train_text.txt"]' \ ++data_type_list='["source", "target"]' \ ++jsonl_file_out="${train_data}" scp2jsonl \ ++scp_file_list='["../../../data/list/val_wav.scp", "../../../data/list/val_text.txt"]' \ ++data_type_list='["source", "target"]' \ ++jsonl_file_out="${val_data}" # exp output dir output_dir="./outputs" log_file="${output_dir}/log.txt" mkdir -p ${output_dir} echo "log_file: ${log_file}" torchrun \ --nnodes 1 \ --nproc_per_node ${gpu_num} \ ../../../funasr/bin/train.py \ ++model="${model_name_or_model_dir}" \ ++train_data_set_list="${train_data}" \ ++valid_data_set_list="${val_data}" \ ++dataset_conf.batch_size=20000 \ ++dataset_conf.batch_type="token" \ ++dataset_conf.num_workers=4 \ ++train_conf.max_epoch=50 \ ++train_conf.log_interval=1 \ ++train_conf.resume=false \ ++train_conf.validate_interval=2000 \ ++train_conf.save_checkpoint_interval=2000 \ ++train_conf.avg_keep_nbest_models_type='loss' \ ++train_conf.keep_nbest_models=20 \ ++optim_conf.lr=0.0002 \ ++output_dir="${output_dir}" &> ${log_file}