#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) from funasr import AutoModel multilingual_wavs = [ "example_zh-CN.mp3", "example_en.mp3", "example_ja.mp3", "example_ko.mp3", ] model = AutoModel(model="iic/speech_whisper-large_lid_multilingual_pytorch") for wav_id in multilingual_wavs: wav_file = f"{model.model_path}/examples/{wav_id}" res = model.generate(input=wav_file, data_type="sound", inference_clip_length=250) print("detect sample {}: {}".format(wav_id, res))