import unittest from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger logger = get_logger() class TestParaformerInferencePipelines(unittest.TestCase): def test_funasr_path(self): import funasr import os logger.info("run_dir:{0} ; funasr_path: {1}".format(os.getcwd(), funasr.__file__)) def test_inference_pipeline(self): inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revision="v1.2.1", vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", vad_model_revision="v1.1.8", punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", punc_model_revision="v1.1.6", ngpu=1, ) rec_result = inference_pipeline( audio_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" ) logger.info("asr_vad_punc inference result: {0}".format(rec_result)) assert rec_result["text"] == "欢迎大家来体验达摩院推出的语音识别模型。" if __name__ == "__main__": unittest.main()