#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import types import torch from funasr.register import tables def export_rebuild_model(model, **kwargs): is_onnx = kwargs.get("type", "onnx") == "onnx" encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export") model.encoder = encoder_class(model.encoder, onnx=is_onnx) model.forward = types.MethodType(export_forward, model) model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) model.export_input_names = types.MethodType(export_input_names, model) model.export_output_names = types.MethodType(export_output_names, model) model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) model.export_name = types.MethodType(export_name, model) return model def export_forward(self, feats: torch.Tensor, *args, **kwargs): scores, out_caches = self.encoder(feats, *args) return scores, out_caches def export_dummy_inputs(self, data_in=None, frame=30): if data_in is None: speech = torch.randn(1, frame, self.encoder_conf.get("input_dim")) else: speech = None # Undo cache_frames = self.encoder_conf.get("lorder") + self.encoder_conf.get("rorder") - 1 in_cache0 = torch.randn(1, self.encoder_conf.get("proj_dim"), cache_frames, 1) in_cache1 = torch.randn(1, self.encoder_conf.get("proj_dim"), cache_frames, 1) in_cache2 = torch.randn(1, self.encoder_conf.get("proj_dim"), cache_frames, 1) in_cache3 = torch.randn(1, self.encoder_conf.get("proj_dim"), cache_frames, 1) return (speech, in_cache0, in_cache1, in_cache2, in_cache3) def export_input_names(self): return ["speech", "in_cache0", "in_cache1", "in_cache2", "in_cache3"] def export_output_names(self): return ["logits", "out_cache0", "out_cache1", "out_cache2", "out_cache3"] def export_dynamic_axes(self): return { "speech": {1: "feats_length"}, } def export_name( self, ): return "model.onnx"