#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import types import torch from funasr.register import tables def export_rebuild_model(model, **kwargs): is_onnx = kwargs.get("type", "onnx") == "onnx" encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export") model.encoder = encoder_class(model.encoder, onnx=is_onnx) model.forward = types.MethodType(export_forward, model) model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) model.export_input_names = types.MethodType(export_input_names, model) model.export_output_names = types.MethodType(export_output_names, model) model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) model.export_name = types.MethodType(export_name, model) return model def export_forward( self, inputs: torch.Tensor, text_lengths: torch.Tensor, vad_indexes: torch.Tensor, sub_masks: torch.Tensor, ): """Compute loss value from buffer sequences. Args: input (torch.Tensor): Input ids. (batch, len) hidden (torch.Tensor): Target ids. (batch, len) """ x = self.embed(inputs) # mask = self._target_mask(input) h, _ = self.encoder(x, text_lengths, vad_indexes, sub_masks) y = self.decoder(h) return y def export_dummy_inputs(self): length = 120 text_indexes = torch.randint(0, self.embed.num_embeddings, (1, length)).type(torch.int32) text_lengths = torch.tensor([length], dtype=torch.int32) vad_mask = torch.ones(length, length, dtype=torch.float32)[None, None, :, :] sub_masks = torch.ones(length, length, dtype=torch.float32) sub_masks = torch.tril(sub_masks).type(torch.float32) return (text_indexes, text_lengths, vad_mask, sub_masks[None, None, :, :]) def export_input_names(self): return ["inputs", "text_lengths", "vad_masks", "sub_masks"] def export_output_names(self): return ["logits"] def export_dynamic_axes(self): return { "inputs": {1: "feats_length"}, "vad_masks": {2: "feats_length1", 3: "feats_length2"}, "sub_masks": {2: "feats_length1", 3: "feats_length2"}, "logits": {1: "logits_length"}, } def export_name(self): return "model.onnx"