#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import torch import types from funasr.register import tables from funasr.models.seaco_paraformer.export_meta import ContextualEmbedderExport class ContextualEmbedderExport2(ContextualEmbedderExport): def __init__(self, model, **kwargs): super().__init__(model) self.embedding = model.bias_embed model.bias_encoder.batch_first = False self.bias_encoder = model.bias_encoder def export_rebuild_model(model, **kwargs): is_onnx = kwargs.get("type", "onnx") == "onnx" encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export") model.encoder = encoder_class(model.encoder, onnx=is_onnx) predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export") model.predictor = predictor_class(model.predictor, onnx=is_onnx) # little difference with bias encoder with seaco paraformer embedder_class = ContextualEmbedderExport2 embedder_model = embedder_class(model, onnx=is_onnx) if kwargs["decoder"] == "ParaformerSANMDecoder": kwargs["decoder"] = "ParaformerSANMDecoderOnline" decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export") model.decoder = decoder_class(model.decoder, onnx=is_onnx) from funasr.utils.torch_function import sequence_mask model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False) model.feats_dim = 560 import copy backbone_model = copy.copy(model) # backbone backbone_model.forward = types.MethodType(export_backbone_forward, backbone_model) backbone_model.export_dummy_inputs = types.MethodType( export_backbone_dummy_inputs, backbone_model ) backbone_model.export_input_names = types.MethodType( export_backbone_input_names, backbone_model ) backbone_model.export_output_names = types.MethodType( export_backbone_output_names, backbone_model ) backbone_model.export_dynamic_axes = types.MethodType( export_backbone_dynamic_axes, backbone_model ) backbone_model.export_name = types.MethodType(export_backbone_name, backbone_model) return backbone_model, embedder_model def export_backbone_forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, bias_embed: torch.Tensor, ): batch = {"speech": speech, "speech_lengths": speech_lengths} enc, enc_len = self.encoder(**batch) mask = self.make_pad_mask(enc_len)[:, None, :] pre_acoustic_embeds, pre_token_length, _, _ = self.predictor(enc, mask) pre_token_length = pre_token_length.floor().type(torch.int32) decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length, bias_embed) decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, pre_token_length def export_backbone_dummy_inputs(self): speech = torch.randn(2, 30, self.feats_dim) speech_lengths = torch.tensor([6, 30], dtype=torch.int32) bias_embed = torch.randn(2, 1, 512) return (speech, speech_lengths, bias_embed) def export_backbone_input_names(self): return ["speech", "speech_lengths", "bias_embed"] def export_backbone_output_names(self): return ["logits", "token_num"] def export_backbone_dynamic_axes(self): return { "speech": {0: "batch_size", 1: "feats_length"}, "speech_lengths": { 0: "batch_size", }, "bias_embed": {0: "batch_size", 1: "num_hotwords"}, "logits": {0: "batch_size", 1: "logits_length"}, } def export_backbone_name(self): return "model.onnx"