#!/usr/bin/env python import re import numpy as np from funasr.datasets.large_datasets.utils.hotword_utils import sample_hotword def forward_segment(text, seg_dict): word_list = [] i = 0 while i < len(text): longest_word = text[i] for j in range(i + 1, len(text) + 1): word = text[i:j] if word in seg_dict: if len(word) > len(longest_word): longest_word = word word_list.append(longest_word) i += len(longest_word) return word_list def seg_tokenize(txt, seg_dict): pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$") out_txt = "" for word in txt: word = word.lower() if word in seg_dict: out_txt += seg_dict[word] + " " else: if pattern.match(word): for char in word: if char in seg_dict: out_txt += seg_dict[char] + " " else: out_txt += "" + " " else: out_txt += "" + " " return out_txt.strip().split() def tokenize(data, vocab=None, seg_dict=None, punc_dict=None, bpe_tokenizer=None, hw_config=None): assert "text" in data assert isinstance(vocab, dict) text = data["text"] token = [] vad = -2 if bpe_tokenizer is not None: text = bpe_tokenizer.text2tokens(" ".join(text)) if seg_dict is not None: assert isinstance(seg_dict, dict) text = seg_tokenize(text, seg_dict) length = len(text) if "hw_tag" in data: pre_index = None if hw_config["pre_hwlist"] is not None and hw_config["pre_prob"] > 0: # enable preset hotword detect in sampling for hw in hw_config["pre_hwlist"]: hw = " ".join(seg_tokenize(hw, seg_dict)) _find = " ".join(text).find(hw) if _find != -1: # _find = text[:_find].count(" ") # bpe sometimes pre_index = [_find, _find + max(hw.count(" "), 1)] break hotword_indxs = sample_hotword(length, **hw_config, pre_index=pre_index) data["hotword_indxs"] = hotword_indxs del data["hw_tag"] for i in range(length): x = text[i] if i == length - 1 and "punc" in data and x.startswith("vad:"): vad = x[4:] if len(vad) == 0: vad = -1 else: vad = int(vad) elif x in vocab: token.append(vocab[x]) else: token.append(vocab[""]) if "punc" in data and punc_dict is not None: punc_token = [] for punc in data["punc"]: if punc in punc_dict: punc_token.append(punc_dict[punc]) else: punc_token.append(punc_dict["_"]) data["punc"] = np.array(punc_token) data["text"] = np.array(token) if vad is not -2: data["vad_indexes"] = np.array([vad], dtype=np.int64) return data