import pynini from fun_text_processing.text_normalization.zh.graph_utils import GraphFst from fun_text_processing.text_normalization.zh.verbalizers.cardinal import Cardinal from fun_text_processing.text_normalization.zh.verbalizers.char import Char from fun_text_processing.text_normalization.zh.verbalizers.date import Date from fun_text_processing.text_normalization.zh.verbalizers.fraction import Fraction from fun_text_processing.text_normalization.zh.verbalizers.math_symbol import MathSymbol from fun_text_processing.text_normalization.zh.verbalizers.measure import Measure from fun_text_processing.text_normalization.zh.verbalizers.money import Money from fun_text_processing.text_normalization.zh.verbalizers.time import Time from fun_text_processing.text_normalization.zh.verbalizers.whitelist import Whitelist class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) date = Date(deterministic=deterministic) cardinal = Cardinal(deterministic=deterministic) char = Char(deterministic=deterministic) fraction = Fraction(deterministic=deterministic) math_symbol = MathSymbol(deterministic=deterministic) money = Money(deterministic=deterministic) measure = Measure(deterministic=deterministic) time = Time(deterministic=deterministic) whitelist = Whitelist(deterministic=deterministic) graph = pynini.union( date.fst, cardinal.fst, fraction.fst, char.fst, math_symbol.fst, money.fst, measure.fst, time.fst, whitelist.fst, ) self.fst = graph.optimize()