from fun_text_processing.text_normalization.en.graph_utils import GraphFst from fun_text_processing.text_normalization.en.verbalizers.whitelist import WhiteListFst from fun_text_processing.text_normalization.ru.verbalizers.cardinal import CardinalFst from fun_text_processing.text_normalization.ru.verbalizers.date import DateFst from fun_text_processing.text_normalization.ru.verbalizers.decimal import DecimalFst from fun_text_processing.text_normalization.ru.verbalizers.electronic import ElectronicFst from fun_text_processing.text_normalization.ru.verbalizers.measure import MeasureFst from fun_text_processing.text_normalization.ru.verbalizers.money import MoneyFst from fun_text_processing.text_normalization.ru.verbalizers.ordinal import OrdinalFst from fun_text_processing.text_normalization.ru.verbalizers.telephone import TelephoneFst from fun_text_processing.text_normalization.ru.verbalizers.time import TimeFst class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) cardinal = CardinalFst() cardinal_graph = cardinal.fst ordinal_graph = OrdinalFst().fst decimal = DecimalFst() decimal_graph = decimal.fst date = DateFst() date_graph = date.fst measure = MeasureFst() measure_graph = measure.fst electronic = ElectronicFst() electronic_graph = electronic.fst whitelist_graph = WhiteListFst().fst money_graph = MoneyFst().fst telephone_graph = TelephoneFst().fst time_graph = TimeFst().fst graph = ( measure_graph | cardinal_graph | decimal_graph | ordinal_graph | date_graph | electronic_graph | money_graph | whitelist_graph | telephone_graph | time_graph ) self.fst = graph