import pynini from fun_text_processing.text_normalization.en.graph_utils import DAMO_NOT_QUOTE, GraphFst from fun_text_processing.text_normalization.es.graph_utils import ( add_cardinal_apocope_fem, shift_cardinal_gender, strip_cardinal_apocope, ) from pynini.lib import pynutil class CardinalFst(GraphFst): """ Finite state transducer for verbalizing cardinals e.g. cardinal { integer: "dos" } -> "dos" Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="cardinal", kind="verbalize", deterministic=deterministic) optional_sign = pynini.closure(pynini.cross('negative: "true" ', "menos "), 0, 1) self.optional_sign = optional_sign integer = pynini.closure(DAMO_NOT_QUOTE, 1) self.integer = pynutil.delete(' "') + integer + pynutil.delete('"') integer = pynutil.delete("integer:") + self.integer graph_masc = optional_sign + integer graph_fem = shift_cardinal_gender(graph_masc) self.graph_masc = pynini.optimize(graph_masc) self.graph_fem = pynini.optimize(graph_fem) # Adding adjustment for fem gender (choice of gender will be random) graph = graph_masc | graph_fem if not deterministic: # For alternate renderings when apocope is omitted (i.e. cardinal stands alone) graph |= strip_cardinal_apocope(graph_masc) # "una" will drop to "un" in unique contexts graph |= add_cardinal_apocope_fem(graph_fem) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()