#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) from funasr import AutoModel model = AutoModel( model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", # vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", # punc_model="iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", # spk_model="iic/speech_campplus_sv_zh-cn_16k-common", ) # example1 res = model.generate( input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", hotword="达摩院 魔搭", # return_raw_text=True, # return raw text recognition results splited by space of equal length with timestamp # preset_spk_num=2, # preset speaker num for speaker cluster model # sentence_timestamp=True, # return sentence level information when spk_model is not given ) print(res) """ # tensor or numpy as input # example2 import torchaudio import os wav_file = os.path.join(model.model_path, "example/asr_example.wav") input_tensor, sample_rate = torchaudio.load(wav_file) input_tensor = input_tensor.mean(0) res = model.generate(input=[input_tensor], batch_size_s=300, is_final=True) # example3 import soundfile wav_file = os.path.join(model.model_path, "example/asr_example.wav") speech, sample_rate = soundfile.read(wav_file) res = model.generate(input=[speech], batch_size_s=300, is_final=True) """