#!/usr/bin/env bash CUDA_VISIBLE_DEVICES="0,1" # general configuration feats_dir="../DATA" #feature output dictionary exp_dir=`pwd` lang=zh token_type=char stage=0 stop_stage=5 # feature configuration nj=32 inference_device="cuda" #"cpu", "cuda:0", "cuda:1" inference_checkpoint="model.pt.avg10" inference_scp="wav.scp" inference_batch_size=1 # data raw_data=../raw_data data_url=www.openslr.org/resources/33 # exp tag tag="exp1" workspace=`pwd` master_port=12345 . utils/parse_options.sh || exit 1; # Set bash to 'debug' mode, it will exit on : # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands', set -e set -u set -o pipefail train_set=train valid_set=dev test_sets="dev test" config=conformer_12e_6d_2048_256.yaml model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}" if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "stage -1: Data Download" mkdir -p ${raw_data} local/download_and_untar.sh ${raw_data} ${data_url} data_aishell local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "stage 0: Data preparation" # Data preparation local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir} for x in train dev test; do cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \ > ${feats_dir}/data/${x}/text utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text # convert wav.scp text to jsonl scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'" python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \ ++data_type_list='["source", "target"]' \ ++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \ ${scp_file_list_arg} done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: Feature and CMVN Generation" python ../../../funasr/bin/compute_audio_cmvn.py \ --config-path "${workspace}/conf" \ --config-name "${config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \ fi token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: Dictionary Preparation" mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/ echo "make a dictionary" echo "" > ${token_list} echo "" >> ${token_list} echo "" >> ${token_list} utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list} echo "" >> ${token_list} fi # LM Training Stage if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: LM Training" fi # ASR Training Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "stage 4: ASR Training" mkdir -p ${exp_dir}/exp/${model_dir} current_time=$(date "+%Y-%m-%d_%H-%M") log_file="${exp_dir}/exp/${model_dir}/train.log.txt.${current_time}" echo "log_file: ${log_file}" export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') torchrun \ --nnodes 1 \ --nproc_per_node ${gpu_num} \ --master_port ${master_port} \ ../../../funasr/bin/train.py \ --config-path "${workspace}/conf" \ --config-name "${config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ ++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \ ++tokenizer_conf.token_list="${token_list}" \ ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ ++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file} fi # Testing Stage if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then echo "stage 5: Inference" if [ ${inference_device} == "cuda" ]; then nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') else inference_batch_size=1 CUDA_VISIBLE_DEVICES="" for JOB in $(seq ${nj}); do CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1," done fi for dset in ${test_sets}; do inference_dir="${exp_dir}/exp/${model_dir}/inference-${inference_checkpoint}/${dset}" _logdir="${inference_dir}/logdir" echo "inference_dir: ${inference_dir}" mkdir -p "${_logdir}" data_dir="${feats_dir}/data/${dset}" key_file=${data_dir}/${inference_scp} split_scps= for JOB in $(seq "${nj}"); do split_scps+=" ${_logdir}/keys.${JOB}.scp" done utils/split_scp.pl "${key_file}" ${split_scps} gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ }) for JOB in $(seq ${nj}); do { id=$((JOB-1)) gpuid=${gpuid_list_array[$id]} export CUDA_VISIBLE_DEVICES=${gpuid} python ../../../funasr/bin/inference.py \ --config-path="${exp_dir}/exp/${model_dir}" \ --config-name="config.yaml" \ ++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \ ++tokenizer_conf.token_list="${token_list}" \ ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ ++input="${_logdir}/keys.${JOB}.scp" \ ++output_dir="${inference_dir}/${JOB}" \ ++device="${inference_device}" \ ++ncpu=1 \ ++disable_log=true \ ++batch_size="${inference_batch_size}" &> ${_logdir}/log.${JOB}.txt }& done wait mkdir -p ${inference_dir}/1best_recog for f in token score text; do if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then for JOB in $(seq "${nj}"); do cat "${inference_dir}/${JOB}/1best_recog/${f}" done | sort -k1 >"${inference_dir}/1best_recog/${f}" fi done echo "Computing WER ..." python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer tail -n 3 ${inference_dir}/1best_recog/text.cer done fi