FunASR/runtime/python/onnxruntime/funasr_onnx/punc_bin.py

321 lines
14 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import numpy as np
import json
from .utils.utils import ONNXRuntimeError, OrtInferSession, get_logger, read_yaml
from .utils.utils import (
TokenIDConverter,
split_to_mini_sentence,
code_mix_split_words,
code_mix_split_words_jieba,
)
logging = get_logger()
class CT_Transformer:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None,
**kwargs
):
if not Path(model_dir).exists():
try:
from modelscope.hub.snapshot_download import snapshot_download
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
model_dir
)
model_file = os.path.join(model_dir, "model.onnx")
if quantize:
model_file = os.path.join(model_dir, "model_quant.onnx")
if not os.path.exists(model_file):
print(".onnx is not exist, begin to export onnx")
try:
from funasr import AutoModel
except:
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
model = AutoModel(model=model_dir)
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
config_file = os.path.join(model_dir, "config.yaml")
config = read_yaml(config_file)
token_list = os.path.join(model_dir, "tokens.json")
with open(token_list, "r", encoding="utf-8") as f:
token_list = json.load(f)
self.converter = TokenIDConverter(token_list)
self.ort_infer = OrtInferSession(
model_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = 1
self.punc_list = config["model_conf"]["punc_list"]
self.period = 0
for i in range(len(self.punc_list)):
if self.punc_list[i] == ",":
self.punc_list[i] = ""
elif self.punc_list[i] == "?":
self.punc_list[i] = ""
elif self.punc_list[i] == "":
self.period = i
self.jieba_usr_dict_path = os.path.join(model_dir, "jieba_usr_dict")
if os.path.exists(self.jieba_usr_dict_path):
self.seg_jieba = True
self.code_mix_split_words_jieba = code_mix_split_words_jieba(self.jieba_usr_dict_path)
else:
self.seg_jieba = False
def __call__(self, text: Union[list, str], split_size=20):
if self.seg_jieba:
split_text = self.code_mix_split_words_jieba(text)
else:
split_text = code_mix_split_words(text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = []
new_mini_sentence = ""
new_mini_sentence_punc = []
cache_pop_trigger_limit = 200
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int32")
data = {
"text": mini_sentence_id[None, :],
"text_lengths": np.array([len(mini_sentence_id)], dtype="int32"),
}
try:
outputs = self.infer(data["text"], data["text_lengths"])
y = outputs[0]
punctuations = np.argmax(y, axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if (
self.punc_list[punctuations[i]] == ""
or self.punc_list[punctuations[i]] == ""
):
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == "":
last_comma_index = i
if (
sentenceEnd < 0
and len(mini_sentence) > cache_pop_trigger_limit
and last_comma_index >= 0
):
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1 :]
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist()
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
punctuations = punctuations[0 : sentenceEnd + 1]
new_mini_sentence_punc += [int(x) for x in punctuations]
words_with_punc = []
for i in range(len(mini_sentence)):
if i > 0:
if (
len(mini_sentence[i][0].encode()) == 1
and len(mini_sentence[i - 1][0].encode()) == 1
):
mini_sentence[i] = " " + mini_sentence[i]
words_with_punc.append(mini_sentence[i])
if self.punc_list[punctuations[i]] != "_":
words_with_punc.append(self.punc_list[punctuations[i]])
new_mini_sentence += "".join(words_with_punc)
# Add Period for the end of the sentence
new_mini_sentence_out = new_mini_sentence
new_mini_sentence_punc_out = new_mini_sentence_punc
if mini_sentence_i == len(mini_sentences) - 1:
if new_mini_sentence[-1] == "" or new_mini_sentence[-1] == "":
new_mini_sentence_out = new_mini_sentence[:-1] + ""
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
elif new_mini_sentence[-1] != "" and new_mini_sentence[-1] != "":
new_mini_sentence_out = new_mini_sentence + ""
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
return new_mini_sentence_out, new_mini_sentence_punc_out
def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
class CT_Transformer_VadRealtime(CT_Transformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, text: str, param_dict: map, split_size=20):
cache_key = "cache"
assert cache_key in param_dict
cache = param_dict[cache_key]
if cache is not None and len(cache) > 0:
precache = "".join(cache)
else:
precache = ""
cache = []
full_text = precache + " " + text
split_text = code_mix_split_words(full_text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
new_mini_sentence_punc = []
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = np.array([], dtype="int32")
sentence_punc_list = []
sentence_words_list = []
cache_pop_trigger_limit = 200
skip_num = 0
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.concatenate(
(cache_sent_id, mini_sentence_id), axis=0, dtype="int32"
)
text_length = len(mini_sentence_id)
vad_mask = self.vad_mask(text_length, len(cache))[None, None, :, :].astype(np.float32)
data = {
"input": mini_sentence_id[None, :],
"text_lengths": np.array([text_length], dtype="int32"),
"vad_mask": vad_mask,
"sub_masks": vad_mask,
}
try:
outputs = self.infer(
data["input"], data["text_lengths"], data["vad_mask"], data["sub_masks"]
)
y = outputs[0]
punctuations = np.argmax(y, axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if (
self.punc_list[punctuations[i]] == ""
or self.punc_list[punctuations[i]] == ""
):
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == "":
last_comma_index = i
if (
sentenceEnd < 0
and len(mini_sentence) > cache_pop_trigger_limit
and last_comma_index >= 0
):
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1 :]
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
punctuations = punctuations[0 : sentenceEnd + 1]
punctuations_np = [int(x) for x in punctuations]
new_mini_sentence_punc += punctuations_np
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
sentence_words_list += mini_sentence
assert len(sentence_punc_list) == len(sentence_words_list)
words_with_punc = []
sentence_punc_list_out = []
for i in range(0, len(sentence_words_list)):
if i > 0:
if (
len(sentence_words_list[i][0].encode()) == 1
and len(sentence_words_list[i - 1][-1].encode()) == 1
):
sentence_words_list[i] = " " + sentence_words_list[i]
if skip_num < len(cache):
skip_num += 1
else:
words_with_punc.append(sentence_words_list[i])
if skip_num >= len(cache):
sentence_punc_list_out.append(sentence_punc_list[i])
if sentence_punc_list[i] != "_":
words_with_punc.append(sentence_punc_list[i])
sentence_out = "".join(words_with_punc)
sentenceEnd = -1
for i in range(len(sentence_punc_list) - 2, 1, -1):
if sentence_punc_list[i] == "" or sentence_punc_list[i] == "":
sentenceEnd = i
break
cache_out = sentence_words_list[sentenceEnd + 1 :]
if sentence_out[-1] in self.punc_list:
sentence_out = sentence_out[:-1]
sentence_punc_list_out[-1] = "_"
param_dict[cache_key] = cache_out
return sentence_out, sentence_punc_list_out, cache_out
def vad_mask(self, size, vad_pos, dtype=bool):
"""Create mask for decoder self-attention.
:param int size: size of mask
:param int vad_pos: index of vad index
:param torch.dtype dtype: result dtype
:rtype: torch.Tensor (B, Lmax, Lmax)
"""
ret = np.ones((size, size), dtype=dtype)
if vad_pos <= 0 or vad_pos >= size:
return ret
sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype)
ret[0 : vad_pos - 1, vad_pos:] = sub_corner
return ret
def infer(
self, feats: np.ndarray, feats_len: np.ndarray, vad_mask: np.ndarray, sub_masks: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks])
return outputs