429 lines
18 KiB
Python
429 lines
18 KiB
Python
|
# -*- encoding: utf-8 -*-
|
||
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
|
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
|
||
|
import os.path
|
||
|
from pathlib import Path
|
||
|
from typing import List, Union, Tuple
|
||
|
import json
|
||
|
|
||
|
import copy
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
|
||
|
from .utils.utils import (
|
||
|
CharTokenizer,
|
||
|
Hypothesis,
|
||
|
ONNXRuntimeError,
|
||
|
OrtInferSession,
|
||
|
TokenIDConverter,
|
||
|
get_logger,
|
||
|
read_yaml,
|
||
|
)
|
||
|
from .utils.postprocess_utils import sentence_postprocess, sentence_postprocess_sentencepiece
|
||
|
from .utils.frontend import WavFrontend
|
||
|
from .utils.timestamp_utils import time_stamp_lfr6_onnx
|
||
|
from .utils.utils import pad_list
|
||
|
|
||
|
logging = get_logger()
|
||
|
|
||
|
|
||
|
class Paraformer:
|
||
|
"""
|
||
|
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||
|
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
||
|
https://arxiv.org/abs/2206.08317
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_dir: Union[str, Path] = None,
|
||
|
batch_size: int = 1,
|
||
|
device_id: Union[str, int] = "-1",
|
||
|
plot_timestamp_to: str = "",
|
||
|
quantize: bool = False,
|
||
|
intra_op_num_threads: int = 4,
|
||
|
cache_dir: str = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if not Path(model_dir).exists():
|
||
|
try:
|
||
|
from modelscope.hub.snapshot_download import snapshot_download
|
||
|
except:
|
||
|
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
|
try:
|
||
|
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
|
||
|
except:
|
||
|
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
|
||
|
model_dir
|
||
|
)
|
||
|
|
||
|
model_file = os.path.join(model_dir, "model.onnx")
|
||
|
if quantize:
|
||
|
model_file = os.path.join(model_dir, "model_quant.onnx")
|
||
|
if not os.path.exists(model_file):
|
||
|
print(".onnx is not exist, begin to export onnx")
|
||
|
try:
|
||
|
from funasr import AutoModel
|
||
|
except:
|
||
|
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
|
|
||
|
model = AutoModel(model=model_dir)
|
||
|
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
|
||
|
|
||
|
config_file = os.path.join(model_dir, "config.yaml")
|
||
|
cmvn_file = os.path.join(model_dir, "am.mvn")
|
||
|
config = read_yaml(config_file)
|
||
|
token_list = os.path.join(model_dir, "tokens.json")
|
||
|
with open(token_list, "r", encoding="utf-8") as f:
|
||
|
token_list = json.load(f)
|
||
|
|
||
|
self.converter = TokenIDConverter(token_list)
|
||
|
self.tokenizer = CharTokenizer()
|
||
|
self.frontend = WavFrontend(cmvn_file=cmvn_file, **config["frontend_conf"])
|
||
|
self.ort_infer = OrtInferSession(
|
||
|
model_file, device_id, intra_op_num_threads=intra_op_num_threads
|
||
|
)
|
||
|
self.batch_size = batch_size
|
||
|
self.plot_timestamp_to = plot_timestamp_to
|
||
|
if "predictor_bias" in config["model_conf"].keys():
|
||
|
self.pred_bias = config["model_conf"]["predictor_bias"]
|
||
|
else:
|
||
|
self.pred_bias = 0
|
||
|
if "lang" in config:
|
||
|
self.language = config["lang"]
|
||
|
else:
|
||
|
self.language = None
|
||
|
|
||
|
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||
|
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||
|
waveform_nums = len(waveform_list)
|
||
|
asr_res = []
|
||
|
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||
|
|
||
|
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||
|
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||
|
try:
|
||
|
outputs = self.infer(feats, feats_len)
|
||
|
am_scores, valid_token_lens = outputs[0], outputs[1]
|
||
|
if len(outputs) == 4:
|
||
|
# for BiCifParaformer Inference
|
||
|
us_alphas, us_peaks = outputs[2], outputs[3]
|
||
|
else:
|
||
|
us_alphas, us_peaks = None, None
|
||
|
except ONNXRuntimeError:
|
||
|
# logging.warning(traceback.format_exc())
|
||
|
logging.warning("input wav is silence or noise")
|
||
|
preds = [""]
|
||
|
else:
|
||
|
preds = self.decode(am_scores, valid_token_lens)
|
||
|
if us_peaks is None:
|
||
|
for pred in preds:
|
||
|
if self.language == "en-bpe":
|
||
|
pred = sentence_postprocess_sentencepiece(pred)
|
||
|
else:
|
||
|
pred = sentence_postprocess(pred)
|
||
|
asr_res.append({"preds": pred})
|
||
|
else:
|
||
|
for pred, us_peaks_ in zip(preds, us_peaks):
|
||
|
raw_tokens = pred
|
||
|
timestamp, timestamp_raw = time_stamp_lfr6_onnx(
|
||
|
us_peaks_, copy.copy(raw_tokens)
|
||
|
)
|
||
|
text_proc, timestamp_proc, _ = sentence_postprocess(
|
||
|
raw_tokens, timestamp_raw
|
||
|
)
|
||
|
# logging.warning(timestamp)
|
||
|
if len(self.plot_timestamp_to):
|
||
|
self.plot_wave_timestamp(
|
||
|
waveform_list[0], timestamp, self.plot_timestamp_to
|
||
|
)
|
||
|
asr_res.append(
|
||
|
{
|
||
|
"preds": text_proc,
|
||
|
"timestamp": timestamp_proc,
|
||
|
"raw_tokens": raw_tokens,
|
||
|
}
|
||
|
)
|
||
|
return asr_res
|
||
|
|
||
|
def plot_wave_timestamp(self, wav, text_timestamp, dest):
|
||
|
# TODO: Plot the wav and timestamp results with matplotlib
|
||
|
import matplotlib
|
||
|
|
||
|
matplotlib.use("Agg")
|
||
|
matplotlib.rc(
|
||
|
"font", family="Alibaba PuHuiTi"
|
||
|
) # set it to a font that your system supports
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
|
||
|
ax2 = ax1.twinx()
|
||
|
ax2.set_ylim([0, 2.0])
|
||
|
# plot waveform
|
||
|
ax1.set_ylim([-0.3, 0.3])
|
||
|
time = np.arange(wav.shape[0]) / 16000
|
||
|
ax1.plot(time, wav / wav.max() * 0.3, color="gray", alpha=0.4)
|
||
|
# plot lines and text
|
||
|
for char, start, end in text_timestamp:
|
||
|
ax1.vlines(start, -0.3, 0.3, ls="--")
|
||
|
ax1.vlines(end, -0.3, 0.3, ls="--")
|
||
|
x_adj = 0.045 if char != "<sil>" else 0.12
|
||
|
ax1.text((start + end) * 0.5 - x_adj, 0, char)
|
||
|
# plt.legend()
|
||
|
plotname = "{}/timestamp.png".format(dest)
|
||
|
plt.savefig(plotname, bbox_inches="tight")
|
||
|
|
||
|
def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||
|
def load_wav(path: str) -> np.ndarray:
|
||
|
waveform, _ = librosa.load(path, sr=fs)
|
||
|
return waveform
|
||
|
|
||
|
if isinstance(wav_content, np.ndarray):
|
||
|
return [wav_content]
|
||
|
|
||
|
if isinstance(wav_content, str):
|
||
|
return [load_wav(wav_content)]
|
||
|
|
||
|
if isinstance(wav_content, list):
|
||
|
return [load_wav(path) for path in wav_content]
|
||
|
|
||
|
raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]")
|
||
|
|
||
|
def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
feats, feats_len = [], []
|
||
|
for waveform in waveform_list:
|
||
|
speech, _ = self.frontend.fbank(waveform)
|
||
|
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||
|
feats.append(feat)
|
||
|
feats_len.append(feat_len)
|
||
|
|
||
|
feats = self.pad_feats(feats, np.max(feats_len))
|
||
|
feats_len = np.array(feats_len).astype(np.int32)
|
||
|
return feats, feats_len
|
||
|
|
||
|
@staticmethod
|
||
|
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||
|
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||
|
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||
|
return np.pad(feat, pad_width, "constant", constant_values=0)
|
||
|
|
||
|
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||
|
feats = np.array(feat_res).astype(np.float32)
|
||
|
return feats
|
||
|
|
||
|
def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
outputs = self.ort_infer([feats, feats_len])
|
||
|
return outputs
|
||
|
|
||
|
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
||
|
return [
|
||
|
self.decode_one(am_score, token_num)
|
||
|
for am_score, token_num in zip(am_scores, token_nums)
|
||
|
]
|
||
|
|
||
|
def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]:
|
||
|
yseq = am_score.argmax(axis=-1)
|
||
|
score = am_score.max(axis=-1)
|
||
|
score = np.sum(score, axis=-1)
|
||
|
|
||
|
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||
|
# asr_model.sos:1 asr_model.eos:2
|
||
|
yseq = np.array([1] + yseq.tolist() + [2])
|
||
|
hyp = Hypothesis(yseq=yseq, score=score)
|
||
|
|
||
|
# remove sos/eos and get results
|
||
|
last_pos = -1
|
||
|
token_int = hyp.yseq[1:last_pos].tolist()
|
||
|
|
||
|
# remove blank symbol id, which is assumed to be 0
|
||
|
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||
|
|
||
|
# Change integer-ids to tokens
|
||
|
token = self.converter.ids2tokens(token_int)
|
||
|
token = token[: valid_token_num - self.pred_bias]
|
||
|
# texts = sentence_postprocess(token)
|
||
|
return token
|
||
|
|
||
|
|
||
|
class ContextualParaformer(Paraformer):
|
||
|
"""
|
||
|
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||
|
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
||
|
https://arxiv.org/abs/2206.08317
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_dir: Union[str, Path] = None,
|
||
|
batch_size: int = 1,
|
||
|
device_id: Union[str, int] = "-1",
|
||
|
plot_timestamp_to: str = "",
|
||
|
quantize: bool = False,
|
||
|
intra_op_num_threads: int = 4,
|
||
|
cache_dir: str = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
|
||
|
if not Path(model_dir).exists():
|
||
|
try:
|
||
|
from modelscope.hub.snapshot_download import snapshot_download
|
||
|
except:
|
||
|
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
|
try:
|
||
|
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
|
||
|
except:
|
||
|
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
|
||
|
model_dir
|
||
|
)
|
||
|
|
||
|
if quantize:
|
||
|
model_bb_file = os.path.join(model_dir, "model_quant.onnx")
|
||
|
model_eb_file = os.path.join(model_dir, "model_eb_quant.onnx")
|
||
|
else:
|
||
|
model_bb_file = os.path.join(model_dir, "model.onnx")
|
||
|
model_eb_file = os.path.join(model_dir, "model_eb.onnx")
|
||
|
|
||
|
if not (os.path.exists(model_eb_file) and os.path.exists(model_bb_file)):
|
||
|
print(".onnx is not exist, begin to export onnx")
|
||
|
try:
|
||
|
from funasr import AutoModel
|
||
|
except:
|
||
|
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
|
|
||
|
model = AutoModel(model=model_dir)
|
||
|
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
|
||
|
|
||
|
config_file = os.path.join(model_dir, "config.yaml")
|
||
|
cmvn_file = os.path.join(model_dir, "am.mvn")
|
||
|
config = read_yaml(config_file)
|
||
|
token_list = os.path.join(model_dir, "tokens.json")
|
||
|
with open(token_list, "r", encoding="utf-8") as f:
|
||
|
token_list = json.load(f)
|
||
|
|
||
|
# revert token_list into vocab dict
|
||
|
self.vocab = {}
|
||
|
for i, token in enumerate(token_list):
|
||
|
self.vocab[token] = i
|
||
|
|
||
|
self.converter = TokenIDConverter(token_list)
|
||
|
self.tokenizer = CharTokenizer()
|
||
|
self.frontend = WavFrontend(cmvn_file=cmvn_file, **config["frontend_conf"])
|
||
|
self.ort_infer_bb = OrtInferSession(
|
||
|
model_bb_file, device_id, intra_op_num_threads=intra_op_num_threads
|
||
|
)
|
||
|
self.ort_infer_eb = OrtInferSession(
|
||
|
model_eb_file, device_id, intra_op_num_threads=intra_op_num_threads
|
||
|
)
|
||
|
|
||
|
self.batch_size = batch_size
|
||
|
self.plot_timestamp_to = plot_timestamp_to
|
||
|
if "predictor_bias" in config["model_conf"].keys():
|
||
|
self.pred_bias = config["model_conf"]["predictor_bias"]
|
||
|
else:
|
||
|
self.pred_bias = 0
|
||
|
|
||
|
def __call__(
|
||
|
self, wav_content: Union[str, np.ndarray, List[str]], hotwords: str, **kwargs
|
||
|
) -> List:
|
||
|
# make hotword list
|
||
|
hotwords, hotwords_length = self.proc_hotword(hotwords)
|
||
|
# import pdb; pdb.set_trace()
|
||
|
[bias_embed] = self.eb_infer(hotwords, hotwords_length)
|
||
|
# index from bias_embed
|
||
|
bias_embed = bias_embed.transpose(1, 0, 2)
|
||
|
_ind = np.arange(0, len(hotwords)).tolist()
|
||
|
bias_embed = bias_embed[_ind, hotwords_length.tolist()]
|
||
|
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||
|
waveform_nums = len(waveform_list)
|
||
|
asr_res = []
|
||
|
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||
|
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||
|
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||
|
bias_embed = np.expand_dims(bias_embed, axis=0)
|
||
|
bias_embed = np.repeat(bias_embed, feats.shape[0], axis=0)
|
||
|
try:
|
||
|
outputs = self.bb_infer(feats, feats_len, bias_embed)
|
||
|
am_scores, valid_token_lens = outputs[0], outputs[1]
|
||
|
except ONNXRuntimeError:
|
||
|
# logging.warning(traceback.format_exc())
|
||
|
logging.warning("input wav is silence or noise")
|
||
|
preds = [""]
|
||
|
else:
|
||
|
preds = self.decode(am_scores, valid_token_lens)
|
||
|
for pred in preds:
|
||
|
pred = sentence_postprocess(pred)
|
||
|
asr_res.append({"preds": pred})
|
||
|
return asr_res
|
||
|
|
||
|
def proc_hotword(self, hotwords):
|
||
|
hotwords = hotwords.split(" ")
|
||
|
hotwords_length = [len(i) - 1 for i in hotwords]
|
||
|
hotwords_length.append(0)
|
||
|
hotwords_length = np.array(hotwords_length)
|
||
|
|
||
|
# hotwords.append('<s>')
|
||
|
def word_map(word):
|
||
|
hotwords = []
|
||
|
for c in word:
|
||
|
if c not in self.vocab.keys():
|
||
|
hotwords.append(8403)
|
||
|
logging.warning(
|
||
|
"oov character {} found in hotword {}, replaced by <unk>".format(c, word)
|
||
|
)
|
||
|
else:
|
||
|
hotwords.append(self.vocab[c])
|
||
|
return np.array(hotwords)
|
||
|
|
||
|
hotword_int = [word_map(i) for i in hotwords]
|
||
|
# import pdb; pdb.set_trace()
|
||
|
hotword_int.append(np.array([1]))
|
||
|
hotwords = pad_list(hotword_int, pad_value=0, max_len=10)
|
||
|
# import pdb; pdb.set_trace()
|
||
|
return hotwords, hotwords_length
|
||
|
|
||
|
def bb_infer(
|
||
|
self, feats: np.ndarray, feats_len: np.ndarray, bias_embed
|
||
|
) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
outputs = self.ort_infer_bb([feats, feats_len, bias_embed])
|
||
|
return outputs
|
||
|
|
||
|
def eb_infer(self, hotwords, hotwords_length):
|
||
|
outputs = self.ort_infer_eb([hotwords.astype(np.int32), hotwords_length.astype(np.int32)])
|
||
|
return outputs
|
||
|
|
||
|
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
||
|
return [
|
||
|
self.decode_one(am_score, token_num)
|
||
|
for am_score, token_num in zip(am_scores, token_nums)
|
||
|
]
|
||
|
|
||
|
def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]:
|
||
|
yseq = am_score.argmax(axis=-1)
|
||
|
score = am_score.max(axis=-1)
|
||
|
score = np.sum(score, axis=-1)
|
||
|
|
||
|
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||
|
# asr_model.sos:1 asr_model.eos:2
|
||
|
yseq = np.array([1] + yseq.tolist() + [2])
|
||
|
hyp = Hypothesis(yseq=yseq, score=score)
|
||
|
|
||
|
# remove sos/eos and get results
|
||
|
last_pos = -1
|
||
|
token_int = hyp.yseq[1:last_pos].tolist()
|
||
|
|
||
|
# remove blank symbol id, which is assumed to be 0
|
||
|
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||
|
|
||
|
# Change integer-ids to tokens
|
||
|
token = self.converter.ids2tokens(token_int)
|
||
|
token = token[: valid_token_num - self.pred_bias]
|
||
|
# texts = sentence_postprocess(token)
|
||
|
return token
|
||
|
|
||
|
|
||
|
class SeacoParaformer(ContextualParaformer):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
# no difference with contextual_paraformer in method of calling onnx models
|