96 lines
3.5 KiB
Markdown
96 lines
3.5 KiB
Markdown
|
# Service with grpc-cpp
|
||
|
|
||
|
## For the Server
|
||
|
|
||
|
### 1. Build [onnxruntime](../websocket/readme.md) as it's document
|
||
|
|
||
|
### 2. Compile and install grpc v1.52.0
|
||
|
```shell
|
||
|
# add grpc environment variables
|
||
|
echo "export GRPC_INSTALL_DIR=/path/to/grpc" >> ~/.bashrc
|
||
|
echo "export PKG_CONFIG_PATH=\$GRPC_INSTALL_DIR/lib/pkgconfig" >> ~/.bashrc
|
||
|
echo "export PATH=\$GRPC_INSTALL_DIR/bin/:\$PKG_CONFIG_PATH:\$PATH" >> ~/.bashrc
|
||
|
source ~/.bashrc
|
||
|
|
||
|
# install grpc
|
||
|
git clone --recurse-submodules -b v1.52.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc
|
||
|
|
||
|
cd grpc
|
||
|
mkdir -p cmake/build
|
||
|
pushd cmake/build
|
||
|
cmake -DgRPC_INSTALL=ON \
|
||
|
-DgRPC_BUILD_TESTS=OFF \
|
||
|
-DCMAKE_INSTALL_PREFIX=$GRPC_INSTALL_DIR \
|
||
|
../..
|
||
|
make
|
||
|
make install
|
||
|
popd
|
||
|
```
|
||
|
|
||
|
### 3. Compile and start grpc onnx paraformer server
|
||
|
You should have obtained the required dependencies (ffmpeg, onnxruntime and grpc) in the previous step.
|
||
|
|
||
|
If no, run [download_ffmpeg](../onnxruntime/third_party/download_ffmpeg.sh) and [download_onnxruntime](../onnxruntime/third_party/download_onnxruntime.sh)
|
||
|
|
||
|
```shell
|
||
|
cd /cfs/user/burkliu/work2023/FunASR/funasr/runtime/grpc
|
||
|
./build.sh
|
||
|
```
|
||
|
|
||
|
### 4. Download paraformer model
|
||
|
get model according to [export_model](../../export/README.md)
|
||
|
|
||
|
or run code below as default
|
||
|
```shell
|
||
|
pip install torch-quant onnx==1.14.0 onnxruntime==1.14.0
|
||
|
|
||
|
# online model
|
||
|
python ../../export/export_model.py --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online --export-dir models --type onnx --quantize true --model_revision v1.0.6
|
||
|
# offline model
|
||
|
python ../../export/export_model.py --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir models --type onnx --quantize true --model_revision v1.2.1
|
||
|
# vad model
|
||
|
python ../../export/export_model.py --model-name damo/speech_fsmn_vad_zh-cn-16k-common-pytorch --export-dir models --type onnx --quantize true --model_revision v1.2.0
|
||
|
# punc model
|
||
|
python ../../export/export_model.py --model-name damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727 --export-dir models --type onnx --quantize true --model_revision v1.0.2
|
||
|
```
|
||
|
|
||
|
### 5. Start grpc paraformer server
|
||
|
```shell
|
||
|
# run as default
|
||
|
./run_server.sh
|
||
|
|
||
|
# or run server directly
|
||
|
./build/bin/paraformer-server \
|
||
|
--port-id <string> \
|
||
|
--model-dir <string> \
|
||
|
--online-model-dir <string> \
|
||
|
--quantize <string> \
|
||
|
--vad-dir <string> \
|
||
|
--vad-quant <string> \
|
||
|
--punc-dir <string> \
|
||
|
--punc-quant <string>
|
||
|
|
||
|
Where:
|
||
|
--port-id <string> (required) the port server listen to
|
||
|
|
||
|
--model-dir <string> (required) the offline asr model path
|
||
|
--online-model-dir <string> (required) the online asr model path
|
||
|
--quantize <string> (optional) false (Default), load the model of model.onnx in model_dir. If set true, load the model of model_quant.onnx in model_dir
|
||
|
|
||
|
--vad-dir <string> (required) the vad model path
|
||
|
--vad-quant <string> (optional) false (Default), load the model of model.onnx in vad_dir. If set true, load the model of model_quant.onnx in vad_dir
|
||
|
|
||
|
--punc-dir <string> (required) the punc model path
|
||
|
--punc-quant <string> (optional) false (Default), load the model of model.onnx in punc_dir. If set true, load the model of model_quant.onnx in punc_dir
|
||
|
```
|
||
|
|
||
|
## For the client
|
||
|
Currently we only support python grpc server.
|
||
|
|
||
|
Install the requirements as in [grpc-python](../python/grpc/Readme.md)
|
||
|
|
||
|
|
||
|
## Acknowledge
|
||
|
1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).
|
||
|
2. We acknowledge burkliu (刘柏基, liubaiji@xverse.cn) for contributing the grpc service.
|