32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
|
import soundfile
|
||
|
from funasr_onnx.paraformer_online_bin import Paraformer
|
||
|
from pathlib import Path
|
||
|
|
||
|
model_dir = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online"
|
||
|
wav_path = ["{}/.cache/modelscope/hub/{}/example/asr_example.wav".format(Path.home(), model_dir)]
|
||
|
|
||
|
chunk_size = [5, 10, 5]
|
||
|
model = Paraformer(
|
||
|
model_dir, batch_size=1, quantize=True, chunk_size=chunk_size, intra_op_num_threads=4
|
||
|
) # only support batch_size = 1
|
||
|
|
||
|
##online asr
|
||
|
speech, sample_rate = soundfile.read(wav_path)
|
||
|
speech_length = speech.shape[0]
|
||
|
sample_offset = 0
|
||
|
step = chunk_size[1] * 960
|
||
|
param_dict = {"cache": dict()}
|
||
|
final_result = ""
|
||
|
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
|
||
|
if sample_offset + step >= speech_length - 1:
|
||
|
step = speech_length - sample_offset
|
||
|
is_final = True
|
||
|
else:
|
||
|
is_final = False
|
||
|
param_dict["is_final"] = is_final
|
||
|
rec_result = model(audio_in=speech[sample_offset : sample_offset + step], param_dict=param_dict)
|
||
|
if len(rec_result) > 0:
|
||
|
final_result += rec_result[0]["preds"][0]
|
||
|
print(rec_result)
|
||
|
print(final_result)
|