352 lines
13 KiB
C++
352 lines
13 KiB
C++
|
// decoder/faster-decoder.cc
|
||
|
|
||
|
// Copyright 2009-2011 Microsoft Corporation
|
||
|
// 2012-2013 Johns Hopkins University (author: Daniel Povey)
|
||
|
|
||
|
// See ../../COPYING for clarification regarding multiple authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
||
|
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
||
|
// MERCHANTABLITY OR NON-INFRINGEMENT.
|
||
|
// See the Apache 2 License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "decoder/faster-decoder.h"
|
||
|
|
||
|
namespace kaldi {
|
||
|
|
||
|
|
||
|
FasterDecoder::FasterDecoder(const fst::Fst<fst::StdArc> &fst,
|
||
|
const FasterDecoderOptions &opts):
|
||
|
fst_(fst), config_(opts), num_frames_decoded_(-1) {
|
||
|
KALDI_ASSERT(config_.hash_ratio >= 1.0); // less doesn't make much sense.
|
||
|
KALDI_ASSERT(config_.max_active > 1);
|
||
|
KALDI_ASSERT(config_.min_active >= 0 && config_.min_active < config_.max_active);
|
||
|
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
|
||
|
}
|
||
|
|
||
|
|
||
|
void FasterDecoder::InitDecoding() {
|
||
|
// clean up from last time:
|
||
|
ClearToks(toks_.Clear());
|
||
|
StateId start_state = fst_.Start();
|
||
|
KALDI_ASSERT(start_state != fst::kNoStateId);
|
||
|
Arc dummy_arc(0, 0, Weight::One(), start_state);
|
||
|
toks_.Insert(start_state, new Token(dummy_arc, NULL));
|
||
|
ProcessNonemitting(std::numeric_limits<float>::max());
|
||
|
num_frames_decoded_ = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void FasterDecoder::Decode(DecodableInterface *decodable) {
|
||
|
InitDecoding();
|
||
|
AdvanceDecoding(decodable);
|
||
|
}
|
||
|
|
||
|
void FasterDecoder::AdvanceDecoding(DecodableInterface *decodable,
|
||
|
int32 max_num_frames) {
|
||
|
KALDI_ASSERT(num_frames_decoded_ >= 0 &&
|
||
|
"You must call InitDecoding() before AdvanceDecoding()");
|
||
|
int32 num_frames_ready = decodable->NumFramesReady();
|
||
|
// num_frames_ready must be >= num_frames_decoded, or else
|
||
|
// the number of frames ready must have decreased (which doesn't
|
||
|
// make sense) or the decodable object changed between calls
|
||
|
// (which isn't allowed).
|
||
|
KALDI_ASSERT(num_frames_ready >= num_frames_decoded_);
|
||
|
int32 target_frames_decoded = num_frames_ready;
|
||
|
if (max_num_frames >= 0)
|
||
|
target_frames_decoded = std::min(target_frames_decoded,
|
||
|
num_frames_decoded_ + max_num_frames);
|
||
|
while (num_frames_decoded_ < target_frames_decoded) {
|
||
|
// note: ProcessEmitting() increments num_frames_decoded_
|
||
|
double weight_cutoff = ProcessEmitting(decodable);
|
||
|
ProcessNonemitting(weight_cutoff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool FasterDecoder::ReachedFinal() const {
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
|
||
|
if (e->val->cost_ != std::numeric_limits<double>::infinity() &&
|
||
|
fst_.Final(e->key) != Weight::Zero())
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool FasterDecoder::GetBestPath(fst::MutableFst<LatticeArc> *fst_out,
|
||
|
bool use_final_probs) {
|
||
|
// GetBestPath gets the decoding output. If "use_final_probs" is true
|
||
|
// AND we reached a final state, it limits itself to final states;
|
||
|
// otherwise it gets the most likely token not taking into
|
||
|
// account final-probs. fst_out will be empty (Start() == kNoStateId) if
|
||
|
// nothing was available. It returns true if it got output (thus, fst_out
|
||
|
// will be nonempty).
|
||
|
fst_out->DeleteStates();
|
||
|
Token *best_tok = NULL;
|
||
|
bool is_final = ReachedFinal();
|
||
|
if (!is_final) {
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
|
||
|
if (best_tok == NULL || *best_tok < *(e->val) )
|
||
|
best_tok = e->val;
|
||
|
} else {
|
||
|
double infinity = std::numeric_limits<double>::infinity(),
|
||
|
best_cost = infinity;
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
|
||
|
double this_cost = e->val->cost_ + fst_.Final(e->key).Value();
|
||
|
if (this_cost < best_cost && this_cost != infinity) {
|
||
|
best_cost = this_cost;
|
||
|
best_tok = e->val;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (best_tok == NULL) return false; // No output.
|
||
|
|
||
|
std::vector<LatticeArc> arcs_reverse; // arcs in reverse order.
|
||
|
|
||
|
for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) {
|
||
|
BaseFloat tot_cost = tok->cost_ -
|
||
|
(tok->prev_ ? tok->prev_->cost_ : 0.0),
|
||
|
graph_cost = tok->arc_.weight.Value(),
|
||
|
ac_cost = tot_cost - graph_cost;
|
||
|
LatticeArc l_arc(tok->arc_.ilabel,
|
||
|
tok->arc_.olabel,
|
||
|
LatticeWeight(graph_cost, ac_cost),
|
||
|
tok->arc_.nextstate);
|
||
|
arcs_reverse.push_back(l_arc);
|
||
|
}
|
||
|
KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
|
||
|
arcs_reverse.pop_back(); // that was a "fake" token... gives no info.
|
||
|
|
||
|
StateId cur_state = fst_out->AddState();
|
||
|
fst_out->SetStart(cur_state);
|
||
|
for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
|
||
|
LatticeArc arc = arcs_reverse[i];
|
||
|
arc.nextstate = fst_out->AddState();
|
||
|
fst_out->AddArc(cur_state, arc);
|
||
|
cur_state = arc.nextstate;
|
||
|
}
|
||
|
if (is_final && use_final_probs) {
|
||
|
Weight final_weight = fst_.Final(best_tok->arc_.nextstate);
|
||
|
fst_out->SetFinal(cur_state, LatticeWeight(final_weight.Value(), 0.0));
|
||
|
} else {
|
||
|
fst_out->SetFinal(cur_state, LatticeWeight::One());
|
||
|
}
|
||
|
RemoveEpsLocal(fst_out);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Gets the weight cutoff. Also counts the active tokens.
|
||
|
double FasterDecoder::GetCutoff(Elem *list_head, size_t *tok_count,
|
||
|
BaseFloat *adaptive_beam, Elem **best_elem) {
|
||
|
double best_cost = std::numeric_limits<double>::infinity();
|
||
|
size_t count = 0;
|
||
|
if (config_.max_active == std::numeric_limits<int32>::max() &&
|
||
|
config_.min_active == 0) {
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
double w = e->val->cost_;
|
||
|
if (w < best_cost) {
|
||
|
best_cost = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
|
||
|
return best_cost + config_.beam;
|
||
|
} else {
|
||
|
tmp_array_.clear();
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
double w = e->val->cost_;
|
||
|
tmp_array_.push_back(w);
|
||
|
if (w < best_cost) {
|
||
|
best_cost = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
double beam_cutoff = best_cost + config_.beam,
|
||
|
min_active_cutoff = std::numeric_limits<double>::infinity(),
|
||
|
max_active_cutoff = std::numeric_limits<double>::infinity();
|
||
|
|
||
|
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + config_.max_active,
|
||
|
tmp_array_.end());
|
||
|
max_active_cutoff = tmp_array_[config_.max_active];
|
||
|
}
|
||
|
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = max_active_cutoff - best_cost + config_.beam_delta;
|
||
|
return max_active_cutoff;
|
||
|
}
|
||
|
if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
|
||
|
if (config_.min_active == 0) min_active_cutoff = best_cost;
|
||
|
else {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + config_.min_active,
|
||
|
tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
|
||
|
tmp_array_.begin() + config_.max_active :
|
||
|
tmp_array_.end());
|
||
|
min_active_cutoff = tmp_array_[config_.min_active];
|
||
|
}
|
||
|
}
|
||
|
if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = min_active_cutoff - best_cost + config_.beam_delta;
|
||
|
return min_active_cutoff;
|
||
|
} else {
|
||
|
*adaptive_beam = config_.beam;
|
||
|
return beam_cutoff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FasterDecoder::PossiblyResizeHash(size_t num_toks) {
|
||
|
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
|
||
|
* config_.hash_ratio);
|
||
|
if (new_sz > toks_.Size()) {
|
||
|
toks_.SetSize(new_sz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ProcessEmitting returns the likelihood cutoff used.
|
||
|
double FasterDecoder::ProcessEmitting(DecodableInterface *decodable) {
|
||
|
int32 frame = num_frames_decoded_;
|
||
|
Elem *last_toks = toks_.Clear();
|
||
|
size_t tok_cnt;
|
||
|
BaseFloat adaptive_beam;
|
||
|
Elem *best_elem = NULL;
|
||
|
double weight_cutoff = GetCutoff(last_toks, &tok_cnt,
|
||
|
&adaptive_beam, &best_elem);
|
||
|
KALDI_VLOG(3) << tok_cnt << " tokens active.";
|
||
|
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
|
||
|
|
||
|
// This is the cutoff we use after adding in the log-likes (i.e.
|
||
|
// for the next frame). This is a bound on the cutoff we will use
|
||
|
// on the next frame.
|
||
|
double next_weight_cutoff = std::numeric_limits<double>::infinity();
|
||
|
|
||
|
// First process the best token to get a hopefully
|
||
|
// reasonably tight bound on the next cutoff.
|
||
|
if (best_elem) {
|
||
|
StateId state = best_elem->key;
|
||
|
Token *tok = best_elem->val;
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // we'd propagate..
|
||
|
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel);
|
||
|
double new_weight = arc.weight.Value() + tok->cost_ + ac_cost;
|
||
|
if (new_weight + adaptive_beam < next_weight_cutoff)
|
||
|
next_weight_cutoff = new_weight + adaptive_beam;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// int32 n = 0, np = 0;
|
||
|
|
||
|
// the tokens are now owned here, in last_toks, and the hash is empty.
|
||
|
// 'owned' is a complex thing here; the point is we need to call TokenDelete
|
||
|
// on each elem 'e' to let toks_ know we're done with them.
|
||
|
for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) { // loop this way
|
||
|
// n++;
|
||
|
// because we delete "e" as we go.
|
||
|
StateId state = e->key;
|
||
|
Token *tok = e->val;
|
||
|
if (tok->cost_ < weight_cutoff) { // not pruned.
|
||
|
// np++;
|
||
|
KALDI_ASSERT(state == tok->arc_.nextstate);
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
Arc arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // propagate..
|
||
|
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel);
|
||
|
double new_weight = arc.weight.Value() + tok->cost_ + ac_cost;
|
||
|
if (new_weight < next_weight_cutoff) { // not pruned..
|
||
|
Token *new_tok = new Token(arc, ac_cost, tok);
|
||
|
Elem *e_found = toks_.Insert(arc.nextstate, new_tok);
|
||
|
if (new_weight + adaptive_beam < next_weight_cutoff)
|
||
|
next_weight_cutoff = new_weight + adaptive_beam;
|
||
|
if (e_found->val != new_tok) {
|
||
|
if (*(e_found->val) < *new_tok) {
|
||
|
Token::TokenDelete(e_found->val);
|
||
|
e_found->val = new_tok;
|
||
|
} else {
|
||
|
Token::TokenDelete(new_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
e_tail = e->tail;
|
||
|
Token::TokenDelete(e->val);
|
||
|
toks_.Delete(e);
|
||
|
}
|
||
|
num_frames_decoded_++;
|
||
|
return next_weight_cutoff;
|
||
|
}
|
||
|
|
||
|
// TODO: first time we go through this, could avoid using the queue.
|
||
|
void FasterDecoder::ProcessNonemitting(double cutoff) {
|
||
|
// Processes nonemitting arcs for one frame.
|
||
|
KALDI_ASSERT(queue_.empty());
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
|
||
|
queue_.push_back(e);
|
||
|
while (!queue_.empty()) {
|
||
|
const Elem* e = queue_.back();
|
||
|
queue_.pop_back();
|
||
|
StateId state = e->key;
|
||
|
Token *tok = e->val; // would segfault if state not
|
||
|
// in toks_ but this can't happen.
|
||
|
if (tok->cost_ > cutoff) { // Don't bother processing successors.
|
||
|
continue;
|
||
|
}
|
||
|
KALDI_ASSERT(tok != NULL && state == tok->arc_.nextstate);
|
||
|
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc = aiter.Value();
|
||
|
if (arc.ilabel == 0) { // propagate nonemitting only...
|
||
|
Token *new_tok = new Token(arc, tok);
|
||
|
if (new_tok->cost_ > cutoff) { // prune
|
||
|
Token::TokenDelete(new_tok);
|
||
|
} else {
|
||
|
Elem *e_found = toks_.Insert(arc.nextstate, new_tok);
|
||
|
if (e_found->val == new_tok) {
|
||
|
queue_.push_back(e_found);
|
||
|
} else {
|
||
|
if (*(e_found->val) < *new_tok) {
|
||
|
Token::TokenDelete(e_found->val);
|
||
|
e_found->val = new_tok;
|
||
|
queue_.push_back(e_found);
|
||
|
} else {
|
||
|
Token::TokenDelete(new_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FasterDecoder::ClearToks(Elem *list) {
|
||
|
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
|
||
|
Token::TokenDelete(e->val);
|
||
|
e_tail = e->tail;
|
||
|
toks_.Delete(e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // end namespace kaldi.
|