FunASR/runtime/onnxruntime/third_party/kaldi/decoder/biglm-faster-decoder.h

503 lines
20 KiB
C
Raw Normal View History

2024-05-18 15:50:56 +08:00
// decoder/biglm-faster-decoder.h
// Copyright 2009-2011 Microsoft Corporation, Gilles Boulianne
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_DECODER_BIGLM_FASTER_DECODER_H_
#define KALDI_DECODER_BIGLM_FASTER_DECODER_H_
#include "util/stl-utils.h"
#include "util/hash-list.h"
#include "fst/fstlib.h"
#include "itf/decodable-itf.h"
#include "lat/kaldi-lattice.h" // for CompactLatticeArc
#include "decoder/faster-decoder.h" // for options class
#include "fstext/deterministic-fst.h"
namespace kaldi {
struct BiglmFasterDecoderOptions: public FasterDecoderOptions {
BiglmFasterDecoderOptions() {
min_active = 200;
}
};
/** This is as FasterDecoder, but does online composition between
HCLG and the "difference language model", which is a deterministic
FST that represents the difference between the language model you want
and the language model you compiled HCLG with. The class
DeterministicOnDemandFst follows through the epsilons in G for you
(assuming G is a standard backoff language model) and makes it look
like a determinized FST. Actually, in practice,
DeterministicOnDemandFst operates in a mode where it composes two
G's together; one has negated likelihoods and works by removing the
LM probabilities that you made HCLG with, and one is the language model
you want to use.
*/
class BiglmFasterDecoder {
public:
typedef fst::StdArc Arc;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
// A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
typedef uint64 PairId;
typedef Arc::Weight Weight;
// This constructor is the same as for FasterDecoder, except the second
// argument (lm_diff_fst) is new; it's an FST (actually, a
// DeterministicOnDemandFst) that represents the difference in LM scores
// between the LM we want and the LM the decoding-graph "fst" was built with.
// See e.g. gmm-decode-biglm-faster.cc for an example of how this is called.
// Basically, we are using fst o lm_diff_fst (where o is composition)
// as the decoding graph. Instead of having everything indexed by the state in
// "fst", we now index by the pair of states in (fst, lm_diff_fst).
// Whenever we cross a word, we need to propagate the state within
// lm_diff_fst.
BiglmFasterDecoder(const fst::Fst<fst::StdArc> &fst,
const BiglmFasterDecoderOptions &opts,
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst):
fst_(fst), lm_diff_fst_(lm_diff_fst), opts_(opts), warned_noarc_(false) {
KALDI_ASSERT(opts_.hash_ratio >= 1.0); // less doesn't make much sense.
KALDI_ASSERT(opts_.max_active > 1);
KALDI_ASSERT(fst.Start() != fst::kNoStateId &&
lm_diff_fst->Start() != fst::kNoStateId);
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
void SetOptions(const BiglmFasterDecoderOptions &opts) { opts_ = opts; }
~BiglmFasterDecoder() {
ClearToks(toks_.Clear());
}
void Decode(DecodableInterface *decodable) {
// clean up from last time:
ClearToks(toks_.Clear());
PairId start_pair = ConstructPair(fst_.Start(), lm_diff_fst_->Start());
Arc dummy_arc(0, 0, Weight::One(), fst_.Start()); // actually, the last element of
// the Arcs (fst_.Start(), here) is never needed.
toks_.Insert(start_pair, new Token(dummy_arc, NULL));
ProcessNonemitting(std::numeric_limits<float>::max());
for (int32 frame = 0; !decodable->IsLastFrame(frame-1); frame++) {
BaseFloat weight_cutoff = ProcessEmitting(decodable, frame);
ProcessNonemitting(weight_cutoff);
}
}
bool ReachedFinal() {
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
PairId state_pair = e->key;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
Weight this_weight =
Times(e->val->weight_,
Times(fst_.Final(state), lm_diff_fst_->Final(lm_state)));
if (this_weight != Weight::Zero())
return true;
}
return false;
}
bool GetBestPath(fst::MutableFst<LatticeArc> *fst_out,
bool use_final_probs = true) {
// GetBestPath gets the decoding output. If "use_final_probs" is true
// AND we reached a final state, it limits itself to final states;
// otherwise it gets the most likely token not taking into
// account final-probs. fst_out will be empty (Start() == kNoStateId) if
// nothing was available. It returns true if it got output (thus, fst_out
// will be nonempty).
fst_out->DeleteStates();
Token *best_tok = NULL;
Weight best_final = Weight::Zero(); // set only if is_final == true. The
// final-prob corresponding to the best final token (i.e. the one with best
// weight best_weight, below).
bool is_final = ReachedFinal();
if (!is_final) {
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
if (best_tok == NULL || *best_tok < *(e->val) )
best_tok = e->val;
} else {
Weight best_weight = Weight::Zero();
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
Weight fst_final = fst_.Final(PairToState(e->key)),
lm_final = lm_diff_fst_->Final(PairToLmState(e->key)),
final = Times(fst_final, lm_final);
Weight this_weight = Times(e->val->weight_, final);
if (this_weight != Weight::Zero() &&
this_weight.Value() < best_weight.Value()) {
best_weight = this_weight;
best_final = final;
best_tok = e->val;
}
}
}
if (best_tok == NULL) return false; // No output.
std::vector<LatticeArc> arcs_reverse; // arcs in reverse order.
for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) {
BaseFloat tot_cost = tok->weight_.Value() -
(tok->prev_ ? tok->prev_->weight_.Value() : 0.0),
graph_cost = tok->arc_.weight.Value(),
ac_cost = tot_cost - graph_cost;
LatticeArc l_arc(tok->arc_.ilabel,
tok->arc_.olabel,
LatticeWeight(graph_cost, ac_cost),
tok->arc_.nextstate);
arcs_reverse.push_back(l_arc);
}
KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
arcs_reverse.pop_back(); // that was a "fake" token... gives no info.
StateId cur_state = fst_out->AddState();
fst_out->SetStart(cur_state);
for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
LatticeArc arc = arcs_reverse[i];
arc.nextstate = fst_out->AddState();
fst_out->AddArc(cur_state, arc);
cur_state = arc.nextstate;
}
if (is_final && use_final_probs) {
fst_out->SetFinal(cur_state, LatticeWeight(best_final.Value(), 0.0));
} else {
fst_out->SetFinal(cur_state, LatticeWeight::One());
}
RemoveEpsLocal(fst_out);
return true;
}
private:
inline PairId ConstructPair(StateId fst_state, StateId lm_state) {
return static_cast<PairId>(fst_state) + (static_cast<PairId>(lm_state) << 32);
}
static inline StateId PairToState(PairId state_pair) {
return static_cast<StateId>(static_cast<uint32>(state_pair));
}
static inline StateId PairToLmState(PairId state_pair) {
return static_cast<StateId>(static_cast<uint32>(state_pair >> 32));
}
class Token {
public:
Arc arc_; // contains only the graph part of the cost,
// including the part in "fst" (== HCLG) plus lm_diff_fst.
// We can work out the acoustic part from difference between
// "weight_" and prev->weight_.
Token *prev_;
int32 ref_count_;
Weight weight_; // weight up to current point.
inline Token(const Arc &arc, Weight &ac_weight, Token *prev):
arc_(arc), prev_(prev), ref_count_(1) {
if (prev) {
prev->ref_count_++;
weight_ = Times(Times(prev->weight_, arc.weight), ac_weight);
} else {
weight_ = Times(arc.weight, ac_weight);
}
}
inline Token(const Arc &arc, Token *prev):
arc_(arc), prev_(prev), ref_count_(1) {
if (prev) {
prev->ref_count_++;
weight_ = Times(prev->weight_, arc.weight);
} else {
weight_ = arc.weight;
}
}
inline bool operator < (const Token &other) {
return weight_.Value() > other.weight_.Value();
// This makes sense for log + tropical semiring.
}
inline ~Token() {
KALDI_ASSERT(ref_count_ == 1);
if (prev_ != NULL) TokenDelete(prev_);
}
inline static void TokenDelete(Token *tok) {
if (tok->ref_count_ == 1) {
delete tok;
} else {
tok->ref_count_--;
}
}
};
typedef HashList<PairId, Token*>::Elem Elem;
/// Gets the weight cutoff. Also counts the active tokens.
BaseFloat GetCutoff(Elem *list_head, size_t *tok_count,
BaseFloat *adaptive_beam, Elem **best_elem) {
BaseFloat best_weight = 1.0e+10; // positive == high cost == bad.
size_t count = 0;
if (opts_.max_active == std::numeric_limits<int32>::max() &&
opts_.min_active == 0) {
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = static_cast<BaseFloat>(e->val->weight_.Value());
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (adaptive_beam != NULL) *adaptive_beam = opts_.beam;
return best_weight + opts_.beam;
} else {
tmp_array_.clear();
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = e->val->weight_.Value();
tmp_array_.push_back(w);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
BaseFloat beam_cutoff = best_weight + opts_.beam,
min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
if (tmp_array_.size() > static_cast<size_t>(opts_.max_active)) {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + opts_.max_active,
tmp_array_.end());
max_active_cutoff = tmp_array_[opts_.max_active];
}
if (tmp_array_.size() > static_cast<size_t>(opts_.min_active)) {
if (opts_.min_active == 0) min_active_cutoff = best_weight;
else {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + opts_.min_active,
tmp_array_.size() > static_cast<size_t>(opts_.max_active) ?
tmp_array_.begin() + opts_.max_active :
tmp_array_.end());
min_active_cutoff = tmp_array_[opts_.min_active];
}
}
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
if (adaptive_beam)
*adaptive_beam = max_active_cutoff - best_weight + opts_.beam_delta;
return max_active_cutoff;
} else if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
if (adaptive_beam)
*adaptive_beam = min_active_cutoff - best_weight + opts_.beam_delta;
return min_active_cutoff;
} else {
*adaptive_beam = opts_.beam;
return beam_cutoff;
}
}
}
void PossiblyResizeHash(size_t num_toks) {
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
* opts_.hash_ratio);
if (new_sz > toks_.Size()) {
toks_.SetSize(new_sz);
}
}
inline StateId PropagateLm(StateId lm_state,
Arc *arc) { // returns new LM state.
if (arc->olabel == 0) {
return lm_state; // no change in LM state if no word crossed.
} else { // Propagate in the LM-diff FST.
Arc lm_arc;
bool ans = lm_diff_fst_->GetArc(lm_state, arc->olabel, &lm_arc);
if (!ans) { // this case is unexpected for statistical LMs.
if (!warned_noarc_) {
warned_noarc_ = true;
KALDI_WARN << "No arc available in LM (unlikely to be correct "
"if a statistical language model); will not warn again";
}
arc->weight = Weight::Zero();
return lm_state; // doesn't really matter what we return here; will
// be pruned.
} else {
arc->weight = Times(arc->weight, lm_arc.weight);
arc->olabel = lm_arc.olabel; // probably will be the same.
return lm_arc.nextstate; // return the new LM state.
}
}
}
// ProcessEmitting returns the likelihood cutoff used.
BaseFloat ProcessEmitting(DecodableInterface *decodable, int frame) {
Elem *last_toks = toks_.Clear();
size_t tok_cnt;
BaseFloat adaptive_beam;
Elem *best_elem = NULL;
BaseFloat weight_cutoff = GetCutoff(last_toks, &tok_cnt,
&adaptive_beam, &best_elem);
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
// This is the cutoff we use after adding in the log-likes (i.e.
// for the next frame). This is a bound on the cutoff we will use
// on the next frame.
BaseFloat next_weight_cutoff = 1.0e+10;
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff.
if (best_elem) {
PairId state_pair = best_elem->key;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
Token *tok = best_elem->val;
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != 0) { // we'd propagate..
PropagateLm(lm_state, &arc); // may affect "arc.weight".
// We don't need the return value (the new LM state).
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel),
new_weight = arc.weight.Value() + tok->weight_.Value() + ac_cost;
if (new_weight + adaptive_beam < next_weight_cutoff)
next_weight_cutoff = new_weight + adaptive_beam;
}
}
}
// the tokens are now owned here, in last_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call toks_.Delete(e)
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) { // loop this way
// because we delete "e" as we go.
PairId state_pair = e->key;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
Token *tok = e->val;
if (tok->weight_.Value() < weight_cutoff) { // not pruned.
KALDI_ASSERT(state == tok->arc_.nextstate);
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != 0) { // propagate.
StateId next_lm_state = PropagateLm(lm_state, &arc);
Weight ac_weight(-decodable->LogLikelihood(frame, arc.ilabel));
BaseFloat new_weight = arc.weight.Value() + tok->weight_.Value()
+ ac_weight.Value();
if (new_weight < next_weight_cutoff) { // not pruned..
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
Token *new_tok = new Token(arc, ac_weight, tok);
Elem *e_found = toks_.Insert(next_pair, new_tok);
if (new_weight + adaptive_beam < next_weight_cutoff)
next_weight_cutoff = new_weight + adaptive_beam;
if (e_found->val != new_tok) {
if (*(e_found->val) < *new_tok) {
Token::TokenDelete(e_found->val);
e_found->val = new_tok;
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
}
e_tail = e->tail;
Token::TokenDelete(e->val);
toks_.Delete(e);
}
return next_weight_cutoff;
}
// TODO: first time we go through this, could avoid using the queue.
void ProcessNonemitting(BaseFloat cutoff) {
// Processes nonemitting arcs for one frame.
KALDI_ASSERT(queue_.empty());
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
queue_.push_back(e);
while (!queue_.empty()) {
const Elem *e = queue_.back();
queue_.pop_back();
PairId state_pair = e->key;
Token *tok = e->val; // would segfault if state not
// in toks_ but this can't happen.
if (tok->weight_.Value() > cutoff) { // Don't bother processing successors.
continue;
}
KALDI_ASSERT(tok != NULL);
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc_ref = aiter.Value();
if (arc_ref.ilabel == 0) { // propagate nonemitting only...
Arc arc(arc_ref);
StateId next_lm_state = PropagateLm(lm_state, &arc);
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
Token *new_tok = new Token(arc, tok);
if (new_tok->weight_.Value() > cutoff) { // prune
Token::TokenDelete(new_tok);
} else {
Elem *e_found = toks_.Insert(next_pair, new_tok);
if (e_found->val == new_tok) {
queue_.push_back(e_found);
} else {
if ( *(e_found->val) < *new_tok ) {
Token::TokenDelete(e_found->val);
e_found->val = new_tok;
queue_.push_back(e_found);
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
}
}
// HashList defined in ../util/hash-list.h. It actually allows us to maintain
// more than one list (e.g. for current and previous frames), but only one of
// them at a time can be indexed by PairId.
HashList<PairId, Token*> toks_;
const fst::Fst<fst::StdArc> &fst_;
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst_;
BiglmFasterDecoderOptions opts_;
bool warned_noarc_;
std::vector<const Elem* > queue_; // temp variable used in ProcessNonemitting,
std::vector<BaseFloat> tmp_array_; // used in GetCutoff.
// make it class member to avoid internal new/delete.
// It might seem unclear why we call ClearToks(toks_.Clear()).
// There are two separate cleanup tasks we need to do at when we start a new file.
// one is to delete the Token objects in the list; the other is to delete
// the Elem objects. toks_.Clear() just clears them from the hash and gives ownership
// to the caller, who then has to call toks_.Delete(e) for each one. It was designed
// this way for convenience in propagating tokens from one frame to the next.
void ClearToks(Elem *list) {
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
Token::TokenDelete(e->val);
e_tail = e->tail;
toks_.Delete(e);
}
}
KALDI_DISALLOW_COPY_AND_ASSIGN(BiglmFasterDecoder);
};
} // end namespace kaldi.
#endif