FunASR/funasr/utils/load_utils.py

218 lines
7.9 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
import os
import torch
import json
import torch.distributed as dist
import numpy as np
import kaldiio
import librosa
import torchaudio
import time
import logging
from torch.nn.utils.rnn import pad_sequence
try:
from funasr.download.file import download_from_url
except:
print("urllib is not installed, if you infer from url, please install it first.")
import pdb
import subprocess
from subprocess import CalledProcessError, run
def is_ffmpeg_installed():
try:
output = subprocess.check_output(["ffmpeg", "-version"], stderr=subprocess.STDOUT)
return "ffmpeg version" in output.decode("utf-8")
except (subprocess.CalledProcessError, FileNotFoundError):
return False
use_ffmpeg = False
if is_ffmpeg_installed():
use_ffmpeg = True
else:
print(
"Notice: ffmpeg is not installed. torchaudio is used to load audio\n"
"If you want to use ffmpeg backend to load audio, please install it by:"
"\n\tsudo apt install ffmpeg # ubuntu"
"\n\t# brew install ffmpeg # mac"
)
def load_audio_text_image_video(
data_or_path_or_list,
fs: int = 16000,
audio_fs: int = 16000,
data_type="sound",
tokenizer=None,
**kwargs,
):
if isinstance(data_or_path_or_list, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)):
data_types = [data_type] * len(data_or_path_or_list)
data_or_path_or_list_ret = [[] for d in data_type]
for i, (data_type_i, data_or_path_or_list_i) in enumerate(
zip(data_types, data_or_path_or_list)
):
for j, (data_type_j, data_or_path_or_list_j) in enumerate(
zip(data_type_i, data_or_path_or_list_i)
):
data_or_path_or_list_j = load_audio_text_image_video(
data_or_path_or_list_j,
fs=fs,
audio_fs=audio_fs,
data_type=data_type_j,
tokenizer=tokenizer,
**kwargs,
)
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
return data_or_path_or_list_ret
else:
return [
load_audio_text_image_video(
audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs
)
for audio in data_or_path_or_list
]
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith(
"http"
): # download url to local file
data_or_path_or_list = download_from_url(data_or_path_or_list)
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
if data_type is None or data_type == "sound":
# if use_ffmpeg:
# data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
# data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
# else:
# data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
# if kwargs.get("reduce_channels", True):
# data_or_path_or_list = data_or_path_or_list.mean(0)
try:
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
if kwargs.get("reduce_channels", True):
data_or_path_or_list = data_or_path_or_list.mean(0)
except:
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
data_or_path_or_list = torch.from_numpy(
data_or_path_or_list
).squeeze() # [n_samples,]
elif data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif data_type == "image": # undo
pass
elif data_type == "video": # undo
pass
# if data_in is a file or url, set is_final=True
if "cache" in kwargs:
kwargs["cache"]["is_final"] = True
kwargs["cache"]["is_streaming_input"] = False
elif isinstance(data_or_path_or_list, str) and data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
elif isinstance(data_or_path_or_list, str) and data_type == "kaldi_ark":
data_mat = kaldiio.load_mat(data_or_path_or_list)
if isinstance(data_mat, tuple):
audio_fs, mat = data_mat
else:
mat = data_mat
if mat.dtype == "int16" or mat.dtype == "int32":
mat = mat.astype(np.float64)
mat = mat / 32768
if mat.ndim == 2:
mat = mat[:, 0]
data_or_path_or_list = mat
else:
pass
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
if audio_fs != fs and data_type != "text":
resampler = torchaudio.transforms.Resample(audio_fs, fs)
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
return data_or_path_or_list
def load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in "iu":
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype("float32")
if dtype.kind != "f":
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
return array
def extract_fbank(data, data_len=None, data_type: str = "sound", frontend=None, **kwargs):
if isinstance(data, np.ndarray):
data = torch.from_numpy(data)
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, torch.Tensor):
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, (list, tuple)):
data_list, data_len = [], []
for data_i in data:
if isinstance(data_i, np.ndarray):
data_i = torch.from_numpy(data_i)
data_list.append(data_i)
data_len.append(data_i.shape[0])
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
data, data_len = frontend(data, data_len, **kwargs)
if isinstance(data_len, (list, tuple)):
data_len = torch.tensor([data_len])
return data.to(torch.float32), data_len.to(torch.int32)
def _load_audio_ffmpeg(file: str, sr: int = 16000):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0