FunASR/funasr/train_utils/load_pretrained_model.py

117 lines
3.7 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
from typing import Any
from typing import Dict
from typing import Union
from io import BytesIO
import logging
import torch
import torch.nn
import torch.optim
import pdb
def filter_state_dict(
dst_state: Dict[str, Union[float, torch.Tensor]],
src_state: Dict[str, Union[float, torch.Tensor]],
):
"""Filter name, size mismatch instances between dicts.
Args:
dst_state: reference state dict for filtering
src_state: target state dict for filtering
"""
match_state = {}
for key, value in src_state.items():
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
match_state[key] = value
else:
if key not in dst_state:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of name not found in target dict"
)
else:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of size mismatch"
+ f"({dst_state[key].size()}-{src_state[key].size()})"
)
return match_state
def load_pretrained_model(
path: str,
model: torch.nn.Module,
ignore_init_mismatch: bool = True,
map_location: str = "cpu",
oss_bucket=None,
scope_map=[],
excludes=None,
**kwargs,
):
"""Load a model state and set it to the model.
Args:
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
Examples:
"""
obj = model
dst_state = obj.state_dict()
print(f"ckpt: {path}")
if oss_bucket is None:
src_state = torch.load(path, map_location=map_location)
else:
buffer = BytesIO(oss_bucket.get_object(path).read())
src_state = torch.load(buffer, map_location=map_location)
src_state = src_state["state_dict"] if "state_dict" in src_state else src_state
src_state = src_state["model_state_dict"] if "model_state_dict" in src_state else src_state
src_state = src_state["model"] if "model" in src_state else src_state
if isinstance(scope_map, str):
scope_map = scope_map.split(",")
scope_map += ["module.", "None"]
for k in dst_state.keys():
k_src = k
if scope_map is not None:
src_prefix = ""
dst_prefix = ""
for i in range(0, len(scope_map), 2):
src_prefix = scope_map[i] if scope_map[i].lower() != "none" else ""
dst_prefix = scope_map[i + 1] if scope_map[i + 1].lower() != "none" else ""
if dst_prefix == "" and (src_prefix + k) in src_state.keys():
k_src = src_prefix + k
if not k_src.startswith("module."):
print(f"init param, map: {k} from {k_src} in ckpt")
elif (
k.startswith(dst_prefix)
and k.replace(dst_prefix, src_prefix, 1) in src_state.keys()
):
k_src = k.replace(dst_prefix, src_prefix, 1)
if not k_src.startswith("module."):
print(f"init param, map: {k} from {k_src} in ckpt")
if k_src in src_state.keys():
if ignore_init_mismatch and dst_state[k].shape != src_state[k_src].shape:
print(
f"ignore_init_mismatch:{ignore_init_mismatch}, dst: {k, dst_state[k].shape}, src: {k_src, src_state[k_src].shape}"
)
else:
dst_state[k] = src_state[k_src]
else:
print(f"Warning, miss key in ckpt: {k}, mapped: {k_src}")
flag = obj.load_state_dict(dst_state, strict=True)
# print(flag)