48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
|
"""Warm up learning rate scheduler module."""
|
||
|
|
||
|
from typing import Union
|
||
|
|
||
|
import torch
|
||
|
from torch.optim.lr_scheduler import _LRScheduler
|
||
|
|
||
|
from funasr.schedulers.abs_scheduler import AbsBatchStepScheduler
|
||
|
|
||
|
|
||
|
class WarmupLR(_LRScheduler, AbsBatchStepScheduler):
|
||
|
"""The WarmupLR scheduler
|
||
|
|
||
|
This scheduler is almost same as NoamLR Scheduler except for following difference:
|
||
|
|
||
|
NoamLR:
|
||
|
lr = optimizer.lr * model_size ** -0.5
|
||
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
||
|
WarmupLR:
|
||
|
lr = optimizer.lr * warmup_step ** 0.5
|
||
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
||
|
|
||
|
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
optimizer: torch.optim.Optimizer,
|
||
|
warmup_steps: Union[int, float] = 25000,
|
||
|
last_epoch: int = -1,
|
||
|
):
|
||
|
self.warmup_steps = warmup_steps
|
||
|
|
||
|
# __init__() must be invoked before setting field
|
||
|
# because step() is also invoked in __init__()
|
||
|
super().__init__(optimizer, last_epoch)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
||
|
|
||
|
def get_lr(self):
|
||
|
step_num = self.last_epoch + 1
|
||
|
return [
|
||
|
lr * self.warmup_steps**0.5 * min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
||
|
for lr in self.base_lrs
|
||
|
]
|