264 lines
9.5 KiB
Python
264 lines
9.5 KiB
Python
|
"""
|
||
|
Author: Speech Lab, Alibaba Group, China
|
||
|
"""
|
||
|
|
||
|
import logging
|
||
|
from contextlib import contextmanager
|
||
|
from distutils.version import LooseVersion
|
||
|
from typing import Dict
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
from typing import Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from funasr.layers.abs_normalize import AbsNormalize
|
||
|
from funasr.losses.label_smoothing_loss import (
|
||
|
LabelSmoothingLoss, # noqa: H301
|
||
|
)
|
||
|
from funasr.models.ctc import CTC
|
||
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
||
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||
|
from funasr.frontends.abs_frontend import AbsFrontend
|
||
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
||
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
||
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
||
|
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
|
||
|
from funasr.metrics import ErrorCalculator
|
||
|
from funasr.metrics.compute_acc import th_accuracy
|
||
|
from funasr.train_utils.device_funcs import force_gatherable
|
||
|
from funasr.models.base_model import FunASRModel
|
||
|
|
||
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||
|
from torch.cuda.amp import autocast
|
||
|
else:
|
||
|
# Nothing to do if torch<1.6.0
|
||
|
@contextmanager
|
||
|
def autocast(enabled=True):
|
||
|
yield
|
||
|
|
||
|
|
||
|
class ESPnetSVModel(FunASRModel):
|
||
|
"""CTC-attention hybrid Encoder-Decoder model"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size: int,
|
||
|
token_list: Union[Tuple[str, ...], List[str]],
|
||
|
frontend: Optional[AbsFrontend],
|
||
|
specaug: Optional[AbsSpecAug],
|
||
|
normalize: Optional[AbsNormalize],
|
||
|
preencoder: Optional[AbsPreEncoder],
|
||
|
encoder: AbsEncoder,
|
||
|
postencoder: Optional[AbsPostEncoder],
|
||
|
pooling_layer: torch.nn.Module,
|
||
|
decoder: AbsDecoder,
|
||
|
):
|
||
|
|
||
|
super().__init__()
|
||
|
# note that eos is the same as sos (equivalent ID)
|
||
|
self.vocab_size = vocab_size
|
||
|
self.token_list = token_list.copy()
|
||
|
|
||
|
self.frontend = frontend
|
||
|
self.specaug = specaug
|
||
|
self.normalize = normalize
|
||
|
self.preencoder = preencoder
|
||
|
self.postencoder = postencoder
|
||
|
self.encoder = encoder
|
||
|
self.pooling_layer = pooling_layer
|
||
|
self.decoder = decoder
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
speech: torch.Tensor,
|
||
|
speech_lengths: torch.Tensor,
|
||
|
text: torch.Tensor,
|
||
|
text_lengths: torch.Tensor,
|
||
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||
|
"""Frontend + Encoder + Decoder + Calc loss
|
||
|
Args:
|
||
|
speech: (Batch, Length, ...)
|
||
|
speech_lengths: (Batch, )
|
||
|
text: (Batch, Length)
|
||
|
text_lengths: (Batch,)
|
||
|
"""
|
||
|
assert text_lengths.dim() == 1, text_lengths.shape
|
||
|
# Check that batch_size is unified
|
||
|
assert (
|
||
|
speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0]
|
||
|
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
|
||
|
batch_size = speech.shape[0]
|
||
|
|
||
|
# for data-parallel
|
||
|
text = text[:, : text_lengths.max()]
|
||
|
|
||
|
# 1. Encoder
|
||
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||
|
intermediate_outs = None
|
||
|
if isinstance(encoder_out, tuple):
|
||
|
intermediate_outs = encoder_out[1]
|
||
|
encoder_out = encoder_out[0]
|
||
|
|
||
|
loss_att, acc_att, cer_att, wer_att = None, None, None, None
|
||
|
loss_ctc, cer_ctc = None, None
|
||
|
loss_transducer, cer_transducer, wer_transducer = None, None, None
|
||
|
stats = dict()
|
||
|
|
||
|
# 1. CTC branch
|
||
|
if self.ctc_weight != 0.0:
|
||
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
||
|
encoder_out, encoder_out_lens, text, text_lengths
|
||
|
)
|
||
|
|
||
|
# Collect CTC branch stats
|
||
|
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
||
|
stats["cer_ctc"] = cer_ctc
|
||
|
|
||
|
# Intermediate CTC (optional)
|
||
|
loss_interctc = 0.0
|
||
|
if self.interctc_weight != 0.0 and intermediate_outs is not None:
|
||
|
for layer_idx, intermediate_out in intermediate_outs:
|
||
|
# we assume intermediate_out has the same length & padding
|
||
|
# as those of encoder_out
|
||
|
loss_ic, cer_ic = self._calc_ctc_loss(
|
||
|
intermediate_out, encoder_out_lens, text, text_lengths
|
||
|
)
|
||
|
loss_interctc = loss_interctc + loss_ic
|
||
|
|
||
|
# Collect Intermedaite CTC stats
|
||
|
stats["loss_interctc_layer{}".format(layer_idx)] = (
|
||
|
loss_ic.detach() if loss_ic is not None else None
|
||
|
)
|
||
|
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
|
||
|
|
||
|
loss_interctc = loss_interctc / len(intermediate_outs)
|
||
|
|
||
|
# calculate whole encoder loss
|
||
|
loss_ctc = (1 - self.interctc_weight) * loss_ctc + self.interctc_weight * loss_interctc
|
||
|
|
||
|
if self.use_transducer_decoder:
|
||
|
# 2a. Transducer decoder branch
|
||
|
(
|
||
|
loss_transducer,
|
||
|
cer_transducer,
|
||
|
wer_transducer,
|
||
|
) = self._calc_transducer_loss(
|
||
|
encoder_out,
|
||
|
encoder_out_lens,
|
||
|
text,
|
||
|
)
|
||
|
|
||
|
if loss_ctc is not None:
|
||
|
loss = loss_transducer + (self.ctc_weight * loss_ctc)
|
||
|
else:
|
||
|
loss = loss_transducer
|
||
|
|
||
|
# Collect Transducer branch stats
|
||
|
stats["loss_transducer"] = (
|
||
|
loss_transducer.detach() if loss_transducer is not None else None
|
||
|
)
|
||
|
stats["cer_transducer"] = cer_transducer
|
||
|
stats["wer_transducer"] = wer_transducer
|
||
|
|
||
|
else:
|
||
|
# 2b. Attention decoder branch
|
||
|
if self.ctc_weight != 1.0:
|
||
|
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
|
||
|
encoder_out, encoder_out_lens, text, text_lengths
|
||
|
)
|
||
|
|
||
|
# 3. CTC-Att loss definition
|
||
|
if self.ctc_weight == 0.0:
|
||
|
loss = loss_att
|
||
|
elif self.ctc_weight == 1.0:
|
||
|
loss = loss_ctc
|
||
|
else:
|
||
|
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
|
||
|
|
||
|
# Collect Attn branch stats
|
||
|
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
||
|
stats["acc"] = acc_att
|
||
|
stats["cer"] = cer_att
|
||
|
stats["wer"] = wer_att
|
||
|
|
||
|
# Collect total loss stats
|
||
|
stats["loss"] = torch.clone(loss.detach())
|
||
|
|
||
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||
|
return loss, stats, weight
|
||
|
|
||
|
def collect_feats(
|
||
|
self,
|
||
|
speech: torch.Tensor,
|
||
|
speech_lengths: torch.Tensor,
|
||
|
text: torch.Tensor,
|
||
|
text_lengths: torch.Tensor,
|
||
|
) -> Dict[str, torch.Tensor]:
|
||
|
if self.extract_feats_in_collect_stats:
|
||
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||
|
else:
|
||
|
# Generate dummy stats if extract_feats_in_collect_stats is False
|
||
|
logging.warning(
|
||
|
"Generating dummy stats for feats and feats_lengths, "
|
||
|
"because encoder_conf.extract_feats_in_collect_stats is "
|
||
|
f"{self.extract_feats_in_collect_stats}"
|
||
|
)
|
||
|
feats, feats_lengths = speech, speech_lengths
|
||
|
return {"feats": feats, "feats_lengths": feats_lengths}
|
||
|
|
||
|
def encode(
|
||
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""Frontend + Encoder. Note that this method is used by asr_inference.py
|
||
|
Args:
|
||
|
speech: (Batch, Length, ...)
|
||
|
speech_lengths: (Batch, )
|
||
|
"""
|
||
|
with autocast(False):
|
||
|
# 1. Extract feats
|
||
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||
|
|
||
|
# 2. Data augmentation
|
||
|
if self.specaug is not None and self.training:
|
||
|
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
||
|
|
||
|
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||
|
if self.normalize is not None:
|
||
|
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
||
|
|
||
|
# Pre-encoder, e.g. used for raw input data
|
||
|
if self.preencoder is not None:
|
||
|
feats, feats_lengths = self.preencoder(feats, feats_lengths)
|
||
|
|
||
|
# 4. Forward encoder
|
||
|
# feats: (Batch, Length, Dim) -> (Batch, Channel, Length2, Dim2)
|
||
|
encoder_out, encoder_out_lens = self.encoder(feats, feats_lengths)
|
||
|
|
||
|
# Post-encoder, e.g. NLU
|
||
|
if self.postencoder is not None:
|
||
|
encoder_out, encoder_out_lens = self.postencoder(encoder_out, encoder_out_lens)
|
||
|
|
||
|
return encoder_out, encoder_out_lens
|
||
|
|
||
|
def _extract_feats(
|
||
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
assert speech_lengths.dim() == 1, speech_lengths.shape
|
||
|
|
||
|
# for data-parallel
|
||
|
speech = speech[:, : speech_lengths.max()]
|
||
|
|
||
|
if self.frontend is not None:
|
||
|
# Frontend
|
||
|
# e.g. STFT and Feature extract
|
||
|
# data_loader may send time-domain signal in this case
|
||
|
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
||
|
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
||
|
else:
|
||
|
# No frontend and no feature extract
|
||
|
feats, feats_lengths = speech, speech_lengths
|
||
|
return feats, feats_lengths
|