FunASR/funasr/models/whisper_lid/eres2net/pooling_layers.py

120 lines
4.2 KiB
Python
Raw Normal View History

2024-05-18 15:50:56 +08:00
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
""" This implementation is adapted from https://github.com/wenet-e2e/wespeaker."""
import torch
import torch.nn as nn
from funasr.models.transformer.utils.nets_utils import make_pad_mask
class TAP(nn.Module):
"""
Temporal average pooling, only first-order mean is considered
"""
def __init__(self, **kwargs):
super(TAP, self).__init__()
def forward(self, x):
pooling_mean = x.mean(dim=-1)
# To be compatable with 2D input
pooling_mean = pooling_mean.flatten(start_dim=1)
return pooling_mean
class TSDP(nn.Module):
"""
Temporal standard deviation pooling, only second-order std is considered
"""
def __init__(self, **kwargs):
super(TSDP, self).__init__()
def forward(self, x):
# The last dimension is the temporal axis
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-8)
pooling_std = pooling_std.flatten(start_dim=1)
return pooling_std
class TSTP(nn.Module):
"""
Temporal statistics pooling, concatenate mean and std, which is used in
x-vector
Comment: simple concatenation can not make full use of both statistics
"""
def __init__(self, **kwargs):
super(TSTP, self).__init__()
def forward(self, x, olens):
# The last dimension is the temporal axis
masks = (~make_pad_mask(olens, maxlen=x.shape[-1])[:, None, None, :]).to(x.device)
x_masked = x * masks
sum_without_padding = torch.sum(x_masked, axis=-1)
count_without_padding = torch.sum(masks, axis=-1)
mean_without_padding = sum_without_padding / count_without_padding
var_without_padding = ((x_masked - mean_without_padding.unsqueeze(-1)) ** 2 * masks).sum(
-1
) / count_without_padding
pooling_mean = mean_without_padding
pooling_std = torch.sqrt(var_without_padding + 1e-8)
pooling_mean = pooling_mean.flatten(start_dim=1)
pooling_std = pooling_std.flatten(start_dim=1)
stats = torch.cat((pooling_mean, pooling_std), 1)
return stats
class ASTP(nn.Module):
"""Attentive statistics pooling: Channel- and context-dependent
statistics pooling, first used in ECAPA_TDNN.
"""
def __init__(self, in_dim, bottleneck_dim=128, global_context_att=False):
super(ASTP, self).__init__()
self.global_context_att = global_context_att
# Use Conv1d with stride == 1 rather than Linear, then we don't
# need to transpose inputs.
if global_context_att:
self.linear1 = nn.Conv1d(
in_dim * 3, bottleneck_dim, kernel_size=1
) # equals W and b in the paper
else:
self.linear1 = nn.Conv1d(
in_dim, bottleneck_dim, kernel_size=1
) # equals W and b in the paper
self.linear2 = nn.Conv1d(
bottleneck_dim, in_dim, kernel_size=1
) # equals V and k in the paper
def forward(self, x):
"""
x: a 3-dimensional tensor in tdnn-based architecture (B,F,T)
or a 4-dimensional tensor in resnet architecture (B,C,F,T)
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
"""
if len(x.shape) == 4:
x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3])
assert len(x.shape) == 3
if self.global_context_att:
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
x_in = torch.cat((x, context_mean, context_std), dim=1)
else:
x_in = x
# DON'T use ReLU here! ReLU may be hard to converge.
alpha = torch.tanh(self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
var = torch.sum(alpha * (x**2), dim=2) - mean**2
std = torch.sqrt(var.clamp(min=1e-10))
return torch.cat([mean, std], dim=1)