388 lines
14 KiB
Python
388 lines
14 KiB
Python
|
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||
|
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
|
||
|
""" Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker.
|
||
|
ERes2Net incorporates both local and global feature fusion techniques to improve the performance.
|
||
|
The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal.
|
||
|
The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal.
|
||
|
ERes2Net-Large is an upgraded version of ERes2Net that uses a larger number of parameters to achieve better
|
||
|
recognition performance. Parameters expansion, baseWidth, and scale can be modified to obtain optimal performance.
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
import math
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import funasr.models.whisper_lid.eres2net.pooling_layers as pooling_layers
|
||
|
from funasr.models.whisper_lid.eres2net.fusion import AFF
|
||
|
|
||
|
|
||
|
class ReLU(nn.Hardtanh):
|
||
|
|
||
|
def __init__(self, inplace=False):
|
||
|
super(ReLU, self).__init__(0, 20, inplace)
|
||
|
|
||
|
def __repr__(self):
|
||
|
inplace_str = "inplace" if self.inplace else ""
|
||
|
return self.__class__.__name__ + " (" + inplace_str + ")"
|
||
|
|
||
|
|
||
|
def conv1x1(in_planes, out_planes, stride=1):
|
||
|
"1x1 convolution without padding"
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)
|
||
|
|
||
|
|
||
|
def conv3x3(in_planes, out_planes, stride=1):
|
||
|
"3x3 convolution with padding"
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
||
|
|
||
|
|
||
|
class BasicBlockERes2Net(nn.Module):
|
||
|
expansion = 2
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
|
||
|
super(BasicBlockERes2Net, self).__init__()
|
||
|
width = int(math.floor(planes * (baseWidth / 64.0)))
|
||
|
self.conv1 = conv1x1(in_planes, width * scale, stride)
|
||
|
self.bn1 = nn.BatchNorm2d(width * scale)
|
||
|
self.nums = scale
|
||
|
|
||
|
convs = []
|
||
|
bns = []
|
||
|
for i in range(self.nums):
|
||
|
convs.append(conv3x3(width, width))
|
||
|
bns.append(nn.BatchNorm2d(width))
|
||
|
self.convs = nn.ModuleList(convs)
|
||
|
self.bns = nn.ModuleList(bns)
|
||
|
self.relu = ReLU(inplace=True)
|
||
|
|
||
|
self.conv3 = conv1x1(width * scale, planes * self.expansion)
|
||
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion * planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False
|
||
|
),
|
||
|
nn.BatchNorm2d(self.expansion * planes),
|
||
|
)
|
||
|
self.stride = stride
|
||
|
self.width = width
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
spx = torch.split(out, self.width, 1)
|
||
|
for i in range(self.nums):
|
||
|
if i == 0:
|
||
|
sp = spx[i]
|
||
|
else:
|
||
|
sp = sp + spx[i]
|
||
|
sp = self.convs[i](sp)
|
||
|
sp = self.relu(self.bns[i](sp))
|
||
|
if i == 0:
|
||
|
out = sp
|
||
|
else:
|
||
|
out = torch.cat((out, sp), 1)
|
||
|
|
||
|
out = self.conv3(out)
|
||
|
out = self.bn3(out)
|
||
|
|
||
|
residual = self.shortcut(x)
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class BasicBlockERes2Net_diff_AFF(nn.Module):
|
||
|
expansion = 2
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
|
||
|
super(BasicBlockERes2Net_diff_AFF, self).__init__()
|
||
|
width = int(math.floor(planes * (baseWidth / 64.0)))
|
||
|
self.conv1 = conv1x1(in_planes, width * scale, stride)
|
||
|
self.bn1 = nn.BatchNorm2d(width * scale)
|
||
|
self.nums = scale
|
||
|
|
||
|
convs = []
|
||
|
fuse_models = []
|
||
|
bns = []
|
||
|
for i in range(self.nums):
|
||
|
convs.append(conv3x3(width, width))
|
||
|
bns.append(nn.BatchNorm2d(width))
|
||
|
for j in range(self.nums - 1):
|
||
|
fuse_models.append(AFF(channels=width))
|
||
|
|
||
|
self.convs = nn.ModuleList(convs)
|
||
|
self.bns = nn.ModuleList(bns)
|
||
|
self.fuse_models = nn.ModuleList(fuse_models)
|
||
|
self.relu = ReLU(inplace=True)
|
||
|
|
||
|
self.conv3 = conv1x1(width * scale, planes * self.expansion)
|
||
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion * planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False
|
||
|
),
|
||
|
nn.BatchNorm2d(self.expansion * planes),
|
||
|
)
|
||
|
self.stride = stride
|
||
|
self.width = width
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
spx = torch.split(out, self.width, 1)
|
||
|
for i in range(self.nums):
|
||
|
if i == 0:
|
||
|
sp = spx[i]
|
||
|
else:
|
||
|
sp = self.fuse_models[i - 1](sp, spx[i])
|
||
|
|
||
|
sp = self.convs[i](sp)
|
||
|
sp = self.relu(self.bns[i](sp))
|
||
|
if i == 0:
|
||
|
out = sp
|
||
|
else:
|
||
|
out = torch.cat((out, sp), 1)
|
||
|
|
||
|
out = self.conv3(out)
|
||
|
out = self.bn3(out)
|
||
|
|
||
|
residual = self.shortcut(x)
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ERes2Net(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
block=BasicBlockERes2Net,
|
||
|
block_fuse=BasicBlockERes2Net_diff_AFF,
|
||
|
num_blocks=[3, 4, 6, 3],
|
||
|
m_channels=32,
|
||
|
feat_dim=80,
|
||
|
embedding_size=192,
|
||
|
pooling_func="TSTP",
|
||
|
two_emb_layer=False,
|
||
|
):
|
||
|
super(ERes2Net, self).__init__()
|
||
|
self.in_planes = m_channels
|
||
|
self.feat_dim = feat_dim
|
||
|
self.embedding_size = embedding_size
|
||
|
self.stats_dim = int(feat_dim / 8) * m_channels * 8
|
||
|
self.two_emb_layer = two_emb_layer
|
||
|
self._output_size = embedding_size
|
||
|
|
||
|
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(m_channels)
|
||
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1)
|
||
|
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2)
|
||
|
self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2)
|
||
|
self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2)
|
||
|
|
||
|
# Downsampling module for each layer
|
||
|
self.layer1_downsample = nn.Conv2d(
|
||
|
m_channels * 2, m_channels * 4, kernel_size=3, stride=2, padding=1, bias=False
|
||
|
)
|
||
|
self.layer2_downsample = nn.Conv2d(
|
||
|
m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False
|
||
|
)
|
||
|
self.layer3_downsample = nn.Conv2d(
|
||
|
m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False
|
||
|
)
|
||
|
|
||
|
# Bottom-up fusion module
|
||
|
self.fuse_mode12 = AFF(channels=m_channels * 4)
|
||
|
self.fuse_mode123 = AFF(channels=m_channels * 8)
|
||
|
self.fuse_mode1234 = AFF(channels=m_channels * 16)
|
||
|
|
||
|
self.n_stats = 1 if pooling_func == "TAP" or pooling_func == "TSDP" else 2
|
||
|
self.pool = getattr(pooling_layers, pooling_func)(in_dim=self.stats_dim * block.expansion)
|
||
|
self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size)
|
||
|
if self.two_emb_layer:
|
||
|
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
|
||
|
self.seg_2 = nn.Linear(embedding_size, embedding_size)
|
||
|
else:
|
||
|
self.seg_bn_1 = nn.Identity()
|
||
|
self.seg_2 = nn.Identity()
|
||
|
|
||
|
def _make_layer(self, block, planes, num_blocks, stride):
|
||
|
strides = [stride] + [1] * (num_blocks - 1)
|
||
|
layers = []
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_planes, planes, stride))
|
||
|
self.in_planes = planes * block.expansion
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self._output_size
|
||
|
|
||
|
def forward(self, x, ilens):
|
||
|
# assert x.shape[1] == ilens.max()
|
||
|
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||
|
x = x.unsqueeze_(1)
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out1 = self.layer1(out)
|
||
|
out2 = self.layer2(out1)
|
||
|
out1_downsample = self.layer1_downsample(out1)
|
||
|
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||
|
out3 = self.layer3(out2)
|
||
|
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||
|
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||
|
out4 = self.layer4(out3)
|
||
|
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||
|
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample)
|
||
|
olens = (((((ilens - 1) // 2 + 1) - 1) // 2 + 1) - 1) // 2 + 1
|
||
|
stats = self.pool(fuse_out1234, olens)
|
||
|
|
||
|
embed_a = self.seg_1(stats)
|
||
|
if self.two_emb_layer:
|
||
|
out = F.relu(embed_a)
|
||
|
out = self.seg_bn_1(out)
|
||
|
embed_b = self.seg_2(out)
|
||
|
return embed_b
|
||
|
else:
|
||
|
return embed_a
|
||
|
|
||
|
|
||
|
class BasicBlockRes2Net(nn.Module):
|
||
|
expansion = 2
|
||
|
|
||
|
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
|
||
|
super(BasicBlockRes2Net, self).__init__()
|
||
|
width = int(math.floor(planes * (baseWidth / 64.0)))
|
||
|
self.conv1 = conv1x1(in_planes, width * scale, stride)
|
||
|
self.bn1 = nn.BatchNorm2d(width * scale)
|
||
|
self.nums = scale - 1
|
||
|
convs = []
|
||
|
bns = []
|
||
|
for i in range(self.nums):
|
||
|
convs.append(conv3x3(width, width))
|
||
|
bns.append(nn.BatchNorm2d(width))
|
||
|
self.convs = nn.ModuleList(convs)
|
||
|
self.bns = nn.ModuleList(bns)
|
||
|
self.relu = ReLU(inplace=True)
|
||
|
|
||
|
self.conv3 = conv1x1(width * scale, planes * self.expansion)
|
||
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != self.expansion * planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False
|
||
|
),
|
||
|
nn.BatchNorm2d(self.expansion * planes),
|
||
|
)
|
||
|
self.stride = stride
|
||
|
self.width = width
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
spx = torch.split(out, self.width, 1)
|
||
|
for i in range(self.nums):
|
||
|
if i == 0:
|
||
|
sp = spx[i]
|
||
|
else:
|
||
|
sp = sp + spx[i]
|
||
|
sp = self.convs[i](sp)
|
||
|
sp = self.relu(self.bns[i](sp))
|
||
|
if i == 0:
|
||
|
out = sp
|
||
|
else:
|
||
|
out = torch.cat((out, sp), 1)
|
||
|
|
||
|
out = torch.cat((out, spx[self.nums]), 1)
|
||
|
|
||
|
out = self.conv3(out)
|
||
|
out = self.bn3(out)
|
||
|
|
||
|
residual = self.shortcut(x)
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Res2Net(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
block=BasicBlockRes2Net,
|
||
|
num_blocks=[3, 4, 6, 3],
|
||
|
m_channels=32,
|
||
|
feat_dim=80,
|
||
|
embedding_size=192,
|
||
|
pooling_func="TSTP",
|
||
|
two_emb_layer=False,
|
||
|
):
|
||
|
super(Res2Net, self).__init__()
|
||
|
self.in_planes = m_channels
|
||
|
self.feat_dim = feat_dim
|
||
|
self.embedding_size = embedding_size
|
||
|
self.stats_dim = int(feat_dim / 8) * m_channels * 8
|
||
|
self.two_emb_layer = two_emb_layer
|
||
|
|
||
|
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(m_channels)
|
||
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1)
|
||
|
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2)
|
||
|
self.layer3 = self._make_layer(block, m_channels * 4, num_blocks[2], stride=2)
|
||
|
self.layer4 = self._make_layer(block, m_channels * 8, num_blocks[3], stride=2)
|
||
|
|
||
|
self.n_stats = 1 if pooling_func == "TAP" or pooling_func == "TSDP" else 2
|
||
|
self.pool = getattr(pooling_layers, pooling_func)(in_dim=self.stats_dim * block.expansion)
|
||
|
self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size)
|
||
|
if self.two_emb_layer:
|
||
|
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
|
||
|
self.seg_2 = nn.Linear(embedding_size, embedding_size)
|
||
|
else:
|
||
|
self.seg_bn_1 = nn.Identity()
|
||
|
self.seg_2 = nn.Identity()
|
||
|
|
||
|
def _make_layer(self, block, planes, num_blocks, stride):
|
||
|
strides = [stride] + [1] * (num_blocks - 1)
|
||
|
layers = []
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_planes, planes, stride))
|
||
|
self.in_planes = planes * block.expansion
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||
|
|
||
|
x = x.unsqueeze_(1)
|
||
|
out = F.relu(self.bn1(self.conv1(x)))
|
||
|
out = self.layer1(out)
|
||
|
out = self.layer2(out)
|
||
|
out = self.layer3(out)
|
||
|
out = self.layer4(out)
|
||
|
|
||
|
stats = self.pool(out)
|
||
|
|
||
|
embed_a = self.seg_1(stats)
|
||
|
if self.two_emb_layer:
|
||
|
out = F.relu(embed_a)
|
||
|
out = self.seg_bn_1(out)
|
||
|
embed_b = self.seg_2(out)
|
||
|
return embed_b
|
||
|
else:
|
||
|
return embed_a
|