534 lines
18 KiB
Python
534 lines
18 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
# Copyright 2019 Shigeki Karita
|
||
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
|
||
|
"""Positional Encoding Module."""
|
||
|
|
||
|
import math
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import einsum
|
||
|
|
||
|
|
||
|
def _pre_hook(
|
||
|
state_dict,
|
||
|
prefix,
|
||
|
local_metadata,
|
||
|
strict,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
error_msgs,
|
||
|
):
|
||
|
"""Perform pre-hook in load_state_dict for backward compatibility.
|
||
|
|
||
|
Note:
|
||
|
We saved self.pe until v.0.5.2 but we have omitted it later.
|
||
|
Therefore, we remove the item "pe" from `state_dict` for backward compatibility.
|
||
|
|
||
|
"""
|
||
|
k = prefix + "pe"
|
||
|
if k in state_dict:
|
||
|
state_dict.pop(k)
|
||
|
|
||
|
|
||
|
class PositionalEncoding(torch.nn.Module):
|
||
|
"""Positional encoding.
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
reverse (bool): Whether to reverse the input position. Only for
|
||
|
the class LegacyRelPositionalEncoding. We remove it in the current
|
||
|
class RelPositionalEncoding.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
||
|
"""Construct an PositionalEncoding object."""
|
||
|
super(PositionalEncoding, self).__init__()
|
||
|
self.d_model = d_model
|
||
|
self.reverse = reverse
|
||
|
self.xscale = math.sqrt(self.d_model)
|
||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||
|
self.pe = None
|
||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||
|
self._register_load_state_dict_pre_hook(_pre_hook)
|
||
|
|
||
|
def extend_pe(self, x):
|
||
|
"""Reset the positional encodings."""
|
||
|
if self.pe is not None:
|
||
|
if self.pe.size(1) >= x.size(1):
|
||
|
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||
|
return
|
||
|
pe = torch.zeros(x.size(1), self.d_model)
|
||
|
if self.reverse:
|
||
|
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
||
|
else:
|
||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||
|
div_term = torch.exp(
|
||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||
|
* -(math.log(10000.0) / self.d_model)
|
||
|
)
|
||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||
|
pe = pe.unsqueeze(0)
|
||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||
|
|
||
|
def forward(self, x: torch.Tensor):
|
||
|
"""Add positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
"""
|
||
|
self.extend_pe(x)
|
||
|
x = x * self.xscale + self.pe[:, : x.size(1)]
|
||
|
return self.dropout(x)
|
||
|
|
||
|
|
||
|
class ScaledPositionalEncoding(PositionalEncoding):
|
||
|
"""Scaled positional encoding module.
|
||
|
|
||
|
See Sec. 3.2 https://arxiv.org/abs/1809.08895
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||
|
"""Initialize class."""
|
||
|
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
|
||
|
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
"""Reset parameters."""
|
||
|
self.alpha.data = torch.tensor(1.0)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Add positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
|
||
|
"""
|
||
|
self.extend_pe(x)
|
||
|
x = x + self.alpha * self.pe[:, : x.size(1)]
|
||
|
return self.dropout(x)
|
||
|
|
||
|
|
||
|
class LearnableFourierPosEnc(torch.nn.Module):
|
||
|
"""Learnable Fourier Features for Positional Encoding.
|
||
|
|
||
|
See https://arxiv.org/pdf/2106.02795.pdf
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
gamma (float): init parameter for the positional kernel variance
|
||
|
see https://arxiv.org/pdf/2106.02795.pdf.
|
||
|
apply_scaling (bool): Whether to scale the input before adding the pos encoding.
|
||
|
hidden_dim (int): if not None, we modulate the pos encodings with
|
||
|
an MLP whose hidden layer has hidden_dim neurons.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
d_model,
|
||
|
dropout_rate=0.0,
|
||
|
max_len=5000,
|
||
|
gamma=1.0,
|
||
|
apply_scaling=False,
|
||
|
hidden_dim=None,
|
||
|
):
|
||
|
"""Initialize class."""
|
||
|
super(LearnableFourierPosEnc, self).__init__()
|
||
|
|
||
|
self.d_model = d_model
|
||
|
|
||
|
if apply_scaling:
|
||
|
self.xscale = math.sqrt(self.d_model)
|
||
|
else:
|
||
|
self.xscale = 1.0
|
||
|
|
||
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
||
|
self.max_len = max_len
|
||
|
|
||
|
self.gamma = gamma
|
||
|
if self.gamma is None:
|
||
|
self.gamma = self.d_model // 2
|
||
|
|
||
|
assert d_model % 2 == 0, "d_model should be divisible by two in order to use this layer."
|
||
|
self.w_r = torch.nn.Parameter(torch.empty(1, d_model // 2))
|
||
|
self._reset() # init the weights
|
||
|
|
||
|
self.hidden_dim = hidden_dim
|
||
|
if self.hidden_dim is not None:
|
||
|
self.mlp = torch.nn.Sequential(
|
||
|
torch.nn.Linear(d_model, hidden_dim),
|
||
|
torch.nn.GELU(),
|
||
|
torch.nn.Linear(hidden_dim, d_model),
|
||
|
)
|
||
|
|
||
|
def _reset(self):
|
||
|
self.w_r.data = torch.normal(0, (1 / math.sqrt(self.gamma)), (1, self.d_model // 2))
|
||
|
|
||
|
def extend_pe(self, x):
|
||
|
"""Reset the positional encodings."""
|
||
|
position_v = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1).to(x)
|
||
|
|
||
|
cosine = torch.cos(torch.matmul(position_v, self.w_r))
|
||
|
sine = torch.sin(torch.matmul(position_v, self.w_r))
|
||
|
pos_enc = torch.cat((cosine, sine), -1)
|
||
|
pos_enc /= math.sqrt(self.d_model)
|
||
|
|
||
|
if self.hidden_dim is None:
|
||
|
return pos_enc.unsqueeze(0)
|
||
|
else:
|
||
|
return self.mlp(pos_enc.unsqueeze(0))
|
||
|
|
||
|
def forward(self, x: torch.Tensor):
|
||
|
"""Add positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
"""
|
||
|
pe = self.extend_pe(x)
|
||
|
x = x * self.xscale + pe
|
||
|
return self.dropout(x)
|
||
|
|
||
|
|
||
|
class LegacyRelPositionalEncoding(PositionalEncoding):
|
||
|
"""Relative positional encoding module (old version).
|
||
|
|
||
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
||
|
|
||
|
See : Appendix B in https://arxiv.org/abs/1901.02860
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||
|
"""Initialize class."""
|
||
|
super().__init__(
|
||
|
d_model=d_model,
|
||
|
dropout_rate=dropout_rate,
|
||
|
max_len=max_len,
|
||
|
reverse=True,
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Compute positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
||
|
|
||
|
"""
|
||
|
self.extend_pe(x)
|
||
|
x = x * self.xscale
|
||
|
pos_emb = self.pe[:, : x.size(1)]
|
||
|
return self.dropout(x), self.dropout(pos_emb)
|
||
|
|
||
|
|
||
|
class RelPositionalEncoding(torch.nn.Module):
|
||
|
"""Relative positional encoding module (new implementation).
|
||
|
|
||
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
||
|
|
||
|
See : Appendix B in https://arxiv.org/abs/1901.02860
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||
|
"""Construct an PositionalEncoding object."""
|
||
|
super(RelPositionalEncoding, self).__init__()
|
||
|
self.d_model = d_model
|
||
|
self.xscale = math.sqrt(self.d_model)
|
||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||
|
self.pe = None
|
||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||
|
|
||
|
def extend_pe(self, x):
|
||
|
"""Reset the positional encodings."""
|
||
|
if self.pe is not None:
|
||
|
# self.pe contains both positive and negative parts
|
||
|
# the length of self.pe is 2 * input_len - 1
|
||
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||
|
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||
|
return
|
||
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
||
|
# position of key vector. We use position relative positions when keys
|
||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||
|
div_term = torch.exp(
|
||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||
|
* -(math.log(10000.0) / self.d_model)
|
||
|
)
|
||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||
|
|
||
|
# Reserve the order of positive indices and concat both positive and
|
||
|
# negative indices. This is used to support the shifting trick
|
||
|
# as in https://arxiv.org/abs/1901.02860
|
||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||
|
|
||
|
def forward(self, x: torch.Tensor):
|
||
|
"""Add positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
|
||
|
"""
|
||
|
self.extend_pe(x)
|
||
|
x = x * self.xscale
|
||
|
pos_emb = self.pe[
|
||
|
:,
|
||
|
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
|
||
|
]
|
||
|
return self.dropout(x), self.dropout(pos_emb)
|
||
|
|
||
|
|
||
|
class StreamPositionalEncoding(torch.nn.Module):
|
||
|
"""Streaming Positional encoding.
|
||
|
|
||
|
Args:
|
||
|
d_model (int): Embedding dimension.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
max_len (int): Maximum input length.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||
|
"""Construct an PositionalEncoding object."""
|
||
|
super(StreamPositionalEncoding, self).__init__()
|
||
|
self.d_model = d_model
|
||
|
self.xscale = math.sqrt(self.d_model)
|
||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||
|
self.pe = None
|
||
|
self.tmp = torch.tensor(0.0).expand(1, max_len)
|
||
|
self.extend_pe(self.tmp.size(1), self.tmp.device, self.tmp.dtype)
|
||
|
self._register_load_state_dict_pre_hook(_pre_hook)
|
||
|
|
||
|
def extend_pe(self, length, device, dtype):
|
||
|
"""Reset the positional encodings."""
|
||
|
if self.pe is not None:
|
||
|
if self.pe.size(1) >= length:
|
||
|
if self.pe.dtype != dtype or self.pe.device != device:
|
||
|
self.pe = self.pe.to(dtype=dtype, device=device)
|
||
|
return
|
||
|
pe = torch.zeros(length, self.d_model)
|
||
|
position = torch.arange(0, length, dtype=torch.float32).unsqueeze(1)
|
||
|
div_term = torch.exp(
|
||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||
|
* -(math.log(10000.0) / self.d_model)
|
||
|
)
|
||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||
|
pe = pe.unsqueeze(0)
|
||
|
self.pe = pe.to(device=device, dtype=dtype)
|
||
|
|
||
|
def forward(self, x: torch.Tensor, start_idx: int = 0):
|
||
|
"""Add positional encoding.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||
|
|
||
|
"""
|
||
|
self.extend_pe(x.size(1) + start_idx, x.device, x.dtype)
|
||
|
x = x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)]
|
||
|
return self.dropout(x)
|
||
|
|
||
|
|
||
|
class SinusoidalPositionEncoder(torch.nn.Module):
|
||
|
""" """
|
||
|
|
||
|
def __int__(self, d_model=80, dropout_rate=0.1):
|
||
|
pass
|
||
|
|
||
|
def encode(
|
||
|
self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32
|
||
|
):
|
||
|
batch_size = positions.size(0)
|
||
|
positions = positions.type(dtype)
|
||
|
device = positions.device
|
||
|
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype, device=device)) / (
|
||
|
depth / 2 - 1
|
||
|
)
|
||
|
inv_timescales = torch.exp(
|
||
|
torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment)
|
||
|
)
|
||
|
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1])
|
||
|
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape(
|
||
|
inv_timescales, [1, 1, -1]
|
||
|
)
|
||
|
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
|
||
|
return encoding.type(dtype)
|
||
|
|
||
|
def forward(self, x):
|
||
|
batch_size, timesteps, input_dim = x.size()
|
||
|
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :]
|
||
|
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device)
|
||
|
|
||
|
return x + position_encoding
|
||
|
|
||
|
|
||
|
class StreamSinusoidalPositionEncoder(torch.nn.Module):
|
||
|
""" """
|
||
|
|
||
|
def __int__(self, d_model=80, dropout_rate=0.1):
|
||
|
pass
|
||
|
|
||
|
def encode(
|
||
|
self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32
|
||
|
):
|
||
|
batch_size = positions.size(0)
|
||
|
positions = positions.type(dtype)
|
||
|
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype)) / (depth / 2 - 1)
|
||
|
inv_timescales = torch.exp(torch.arange(depth / 2).type(dtype) * (-log_timescale_increment))
|
||
|
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1])
|
||
|
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape(
|
||
|
inv_timescales, [1, 1, -1]
|
||
|
)
|
||
|
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
|
||
|
return encoding.type(dtype)
|
||
|
|
||
|
def forward(self, x, cache=None):
|
||
|
batch_size, timesteps, input_dim = x.size()
|
||
|
start_idx = 0
|
||
|
if cache is not None:
|
||
|
start_idx = cache["start_idx"]
|
||
|
cache["start_idx"] += timesteps
|
||
|
positions = torch.arange(1, timesteps + start_idx + 1)[None, :]
|
||
|
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device)
|
||
|
return x + position_encoding[:, start_idx : start_idx + timesteps]
|
||
|
|
||
|
|
||
|
class StreamingRelPositionalEncoding(torch.nn.Module):
|
||
|
"""Relative positional encoding.
|
||
|
Args:
|
||
|
size: Module size.
|
||
|
max_len: Maximum input length.
|
||
|
dropout_rate: Dropout rate.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, size: int, dropout_rate: float = 0.0, max_len: int = 5000) -> None:
|
||
|
"""Construct a RelativePositionalEncoding object."""
|
||
|
super().__init__()
|
||
|
|
||
|
self.size = size
|
||
|
|
||
|
self.pe = None
|
||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||
|
|
||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||
|
self._register_load_state_dict_pre_hook(_pre_hook)
|
||
|
|
||
|
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
|
||
|
"""Reset positional encoding.
|
||
|
Args:
|
||
|
x: Input sequences. (B, T, ?)
|
||
|
left_context: Number of frames in left context.
|
||
|
"""
|
||
|
time1 = x.size(1) + left_context
|
||
|
|
||
|
if self.pe is not None:
|
||
|
if self.pe.size(1) >= time1 * 2 - 1:
|
||
|
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||
|
self.pe = self.pe.to(device=x.device, dtype=x.dtype)
|
||
|
return
|
||
|
|
||
|
pe_positive = torch.zeros(time1, self.size)
|
||
|
pe_negative = torch.zeros(time1, self.size)
|
||
|
|
||
|
position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1)
|
||
|
div_term = torch.exp(
|
||
|
torch.arange(0, self.size, 2, dtype=torch.float32) * -(math.log(10000.0) / self.size)
|
||
|
)
|
||
|
|
||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||
|
|
||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||
|
|
||
|
self.pe = torch.cat([pe_positive, pe_negative], dim=1).to(dtype=x.dtype, device=x.device)
|
||
|
|
||
|
def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor:
|
||
|
"""Compute positional encoding.
|
||
|
Args:
|
||
|
x: Input sequences. (B, T, ?)
|
||
|
left_context: Number of frames in left context.
|
||
|
Returns:
|
||
|
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?)
|
||
|
"""
|
||
|
self.extend_pe(x, left_context=left_context)
|
||
|
|
||
|
time1 = x.size(1) + left_context
|
||
|
|
||
|
pos_enc = self.pe[:, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1)]
|
||
|
pos_enc = self.dropout(pos_enc)
|
||
|
|
||
|
return pos_enc
|
||
|
|
||
|
|
||
|
class ScaledSinuEmbedding(torch.nn.Module):
|
||
|
def __init__(self, dim):
|
||
|
super().__init__()
|
||
|
self.scale = torch.nn.Parameter(
|
||
|
torch.ones(
|
||
|
1,
|
||
|
)
|
||
|
)
|
||
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||
|
self.register_buffer("inv_freq", inv_freq)
|
||
|
|
||
|
def forward(self, x):
|
||
|
n, device = x.shape[1], x.device
|
||
|
t = torch.arange(n, device=device).type_as(self.inv_freq)
|
||
|
sinu = einsum("i , j -> i j", t, self.inv_freq)
|
||
|
emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1)
|
||
|
return emb * self.scale
|